Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).
Google Scholar
IPCC. Technical summary in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Portner, H. O. et al.) 39–69. (Cambridge University Press, 2019).
Gruber, N., Boyd, P. W., Frolicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021).
Google Scholar
Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D. & Hales, B. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320, 1490–1492 (2008).
Google Scholar
Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
Google Scholar
Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).
Google Scholar
Polovina, J. J., Howell, E. A. & Abecassis, M. Ocean’s least productive waters are expanding. Geophys. Res. Lett. 35, L03618 (2008).
Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).
Google Scholar
Moore, J. K. et al. Sustained climate warming drives declining marine biological productivity. Science 359, 1139–1143 (2018).
Google Scholar
Gittings, J. A., Raitsos, D. E., Krokos, G. & Hoteit, I. Impacts of warming on phytoplankton abundance and phenology in a typical tropical marine ecosystem. Sci. Rep. 8, 2240 (2018).
Google Scholar
Salgado-Hernanz, P. M., Racault, M. F., Font-Muñoz, J. S. & Basterretxea, G. Trends in phytoplankton phenology in the Mediterranean Sea based on ocean-colour remote sensing. Remote Sens. Environ. 221, 50–64 (2019).
Google Scholar
Thorson, G. Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25, 1–45 (1950).
Google Scholar
Mileikovsky, S. A. Types of larval development in marine bottom invertebrates, their distribution and ecological significance: a re-evaluation. Mar. Biol. 10, 193–213 (1971).
Google Scholar
Ramajo, L. et al. Food supply confers calcifiers resistance to ocean acidification. Sci. Rep. 6, 19374 (2016).
Huey, R. B. & Kingsolver, J. G. Climate warming, resource availability, and the metabolic meltdown of ectotherms. Am. Nat. 194, E140–E150 (2019).
Google Scholar
Hettinger, A. et al. The influence of food supply on the response of Olympia oyster larvae to ocean acidification. Biogeosciences 10, 6629–6638 (2013).
Google Scholar
García, E., Clemente, S., López, C., McAlister, J. S. & Hernández, J. C. Ocean warming modulates the effects of limited food availability on Paracentrotus lividus larval development. Mar. Biol. 162, 1463–1472 (2015).
Google Scholar
Uthicke, S. et al. Climate change as an unexpected co-factor promoting coral eating seastar (Acanthaster planci) outbreaks. Sci. Rep. 5, 8402 (2015).
Google Scholar
Cole, V. J. et al. Effects of multiple climate change stressors: ocean acidification interacts with warming, hyposalinity, and low food supply on the larvae of the brooding flat oyster Ostrea angasi. Mar. Biol. 163, 125 (2016).
Google Scholar
Griffith, A. W. & Gobler, C. J. Transgenerational exposure of North Atlantic bivalves to ocean acidification renders offspring more vulnerable to low pH and additional stressors. Sci. Rep. 7, 11394 (2017).
Google Scholar
Parker, L. M. et al. Adult exposure to ocean acidification is maladaptive for larvae of the Sydney rock oyster Saccostrea glomerata in the presence of multiple stressors. Biol. Lett. 13, 20160798 (2017).
Bogan, S. N., McMahon, J. B., Pechenik, J. A. & Pires, A. Legacy of multiple stressors: responses of gastropod larvae and juveniles to ocean acidification and nutrition. Biol. Bull. 236, 159–173 (2019).
Google Scholar
Gibbs, M. C. et al. Energetic lipid responses of larval oysters to ocean acidification. Mar. Pollut. Bull. 168, 112441 (2021).
Google Scholar
De’Ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27–year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl Acad. Sci. USA 109, 17995–17999 (2012).
Google Scholar
Baird, A. H., Pratchett, M. S., Hoey, A. S., Herdiana, Y. & Campbell, S. J. Acanthaster planci is a major cause of coral mortality in Indonesia. Coral Reefs 32, 803–812 (2013).
Google Scholar
Birkeland, C. Terrestrial runoff as a cause of outbreaks of Acanthaster planci (Echinodermata: Asteroidea). Mar. Biol. 69, 175–185 (1982).
Google Scholar
Pratchett, M. S. et al. Thirty years of research on crown-of-thorns starfish (1986–2016): scientific advances and emerging opportunities. Diversity 9, 41 (2017).
Google Scholar
Wolfe, K., Graba-Landry, A., Dworjanyn, S. A. & Byrne, M. Larval phenotypic plasticity in the boom-and-bust crown-of-thorns seastar, Acanthaster planci. Mar. Ecol. Prog. Ser. 539, 179–189 (2015).
Google Scholar
Wolfe, K., Graba-Landry, A., Dworjanyn, S. A. & Byrne, M. Larval starvation to satiation: influence of nutrient regime on the success of Acanthaster planci. PLoS ONE 10, e0122010 (2015).
Google Scholar
Pratchett, M. S. et al. Larval survivorship and settlement of crown-of-thorns starfish (Acanthaster cf. solaris) at varying algal cell densities. Diversity 9, 2 (2017).
Wolfe, K., Graba-Landry, A., Dworjanyn, S. A. & Byrne, M. Superstars: assessing nutrient thresholds for enhanced larval success of Acanthaster planci, a review of the evidence. Mar. Poll. Bull. 116, 307–314 (2017).
Google Scholar
Uthicke, S. et al. Effects of larvae density and food concentration on crown-of-thorns seastar (Acanthaster cf. solaris) development in an automated flow-through system. Sci. Rep. 8, 642 (2018).
Google Scholar
Lucas, J. S. Quantitative studies of feeding and nutrition during larval development of the coral reef asteroid Acanthaster planci (L.). J. Exp. Mar. Biol. Ecol. 65, 173–193 (1982).
Google Scholar
Johnson, L. G. & Babcock, R. C. Temperature and the larval ecology of the crown-of thorns starfish, Acanthaster planci. Biol. Bull. 187, 304–308 (1994).
Google Scholar
Lamare, M. et al. The thermal tolerance of crown-of-thorns (Acanthaster planci) embryos and bipinnaria larvae: implications for spatial and temporal variation in adult populations. Coral Reefs 33, 207–219 (2014).
Google Scholar
Caballes, C. F., Pratchett, M. S., Raymundo, M. L. & Rivera-Posada, J. A. Environmental tipping points for sperm motility, fertilization, and embryonic development in the crown-of-thorns starfish. Diversity 9, 10 (2017).
Google Scholar
Hue, T. et al. Impact of near-future ocean warming and acidification on the larval development of coral-eating starfish Acanthaster cf. solaris after parental exposure. J. Exp. Mar. Biol. Ecol. 548, 151685 (2022).
Google Scholar
Hue, T. et al. Temperature affects the reproductive outputs of coral-eating starfish Acanthaster spp. after adult exposure to near-future ocean warming and acidification. Mar. Environ. Res. 162, 105164 (2020).
Google Scholar
Lucas, J. Reproductive and larval biology of Acanthaster planci (L.) in Great Barrier Reef waters. Micronesica 9, 197–203 (1973).
Kamya, P. Z. et al. Larvae of the coral eating crown-of-thorns starfish, Acanthaster planci in a warmer-high CO2 ocean. Glob. Chang. Biol. 20, 3365–3376 (2014).
Google Scholar
Sparks, K. M., Foo, S. A., Uthicke, S., Byrne, M. & Lamare, M. Paternal identity influences response of Acanthaster planci embryos to ocean acidification and warming. Coral Reefs 36, 325–338 (2017).
Google Scholar
Uthicke, S. et al. Impacts of ocean acidification on early life-history stages and settlement of the coral-eating sea star Acanthaster planci. PLoS ONE 8, e82938 (2013).
Google Scholar
Tan, C. H., Loh-Chuah, J. Y., Liew, H. J. & Poh, S. C. in Bidong Island: Natural History and Resources (eds Chuan, O. M. et al.) 197–204 (Springer, 2022).
Sokolova, I. M. Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr. Comp. Biol. 53, 597–608 (2013).
Google Scholar
Pechenik, J. A., Wendt, D. E. & Jarrett, J. N. Metamorphosis is not a new beginning; larval experience influences juvenile performance. BioScience 48, 901–910 (1998).
Google Scholar
Marshall, D. J., Bolton, T. F. & Keough, M. J. Offspring size affects the post-metamorphic performance of a colonial marine invertebrate. Ecology 84, 3131–3137 (2003).
Google Scholar
McAlister, J. S. & Miner, B. G. in Evolutionary Ecology of Marine Invertebrate Larvae (eds Carrier, T. et al.) 103–123 (Oxford University Press, 2017).
Vickery, M. & McClintock, J. Effects of food concentration and availability on the incidence of cloning in planktotrophic larvae of the sea star Pisaster ochraceus. Biol. Bull. 199, 298–304 (2000).
Google Scholar
Portner, H.-O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).
Google Scholar
Allison, G. W. Effects of temporary starvation on larvae of the sea star Asterina-miniata. Mar. Biol. 118, 255–261 (1994).
Google Scholar
Basch, L. V. Effects of algal and larval densities on development and survival of asteroid larvae. Mar. Biol. 126, 693–701 (1996).
Google Scholar
George, S. B. Egg quality, larval growth and phenotypic plasticity in a forcipulate seastar. J. Exp. Mar. Biol. Ecol. 237, 203–224 (1999).
Google Scholar
Hensley, F. R. Ontogenetic loss of phenotypic plasticity of age at metamorphosis in tadpoles. Ecology 74, 2405–2412 (1993).
Google Scholar
Hentschel, B. T. & Emlet, R. B. Metamorphosis of barnacle nauplii: effects of food variability and a comparison with amphibian models. Ecology 81, 3495–3508 (2000).
Google Scholar
Phillips, N. E. Variable timing of larval food has consequences for early juvenile performance in a marine mussel. Ecology 85, 2341–2346 (2004).
Google Scholar
Marczak, L. B. & Richardson, J. S. Growth and development rates in a riparian spider are altered by asynchrony between the timing and amount of a resource subsidy. Oecologia 156, 249–258 (2008).
Google Scholar
Zeller, M. & Koella, J. C. Effects of food variability on growth and reproduction of Aedes aegypti. Ecol. Evol. 6, 552–559 (2016).
Google Scholar
Rumrill, S. S. Natural mortality of marine invertebrate larvae. Ophelia 32, 163–198 (1990).
Google Scholar
Jaeckle, W. B. Multiple modes of asexual reproduction by tropical and subtropical sea star larvae: an unusual adaptation for genet dispersal and survival. Biol. Bull. 186, 62–71 (1994).
Google Scholar
Allen, J. D., Richardson, E. L., Deaker, D., Aguera, A. & Byrne, M. Larval cloning in the crown-of-thorns sea star, a keystone coral predator. Mar. Ecol. Prog. Ser. 609, 271–276 (2019).
Google Scholar
Allen, J. D., Armstrong, A. F. & Ziegler, S. L. Environmental induction of polyembryony in echinoid echinoderms. Biol. Bull. 229, 221–231 (2015).
Google Scholar
Melzner, F. et al. Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel Mytilus edulis. PLoS ONE 6, e24223 (2011).
Google Scholar
Gray, M. W., Langdon, C. J., Waldbusser, G. G., Hales, B. & Kramer, S. Mechanistic understanding of ocean acidification impacts on larval feeding physiology and energy budgets of the mussel Mytilus californianus. Mar. Ecol. Prog. Ser. 563, 81–94 (2017).
Google Scholar
Clements, J. C. & Darrow, E. S. Eating in an acidifying ocean: a quantitative review of elevated CO2 effects on the feeding rates of calcifying marine invertebrates. Hydrobiologia 820, 1–21 (2018).
Google Scholar
Stumpp, M. et al. Digestion in sea urchin larvae impaired under ocean acidification. Nat. Clim. Change 3, 1044–1049 (2013).
Google Scholar
Hu, M. Y., Lein, E., Bleich, M., Melzner, F. & Stumpp, M. Trans-life cycle acclimation to experimental ocean acidification affects gastric pH homeostasis and larval recruitment in the sea star Asterias rubens. Acta Physiol. 224, e13075 (2018).
Google Scholar
Roberts, S. D., Van Ruth, P. D., Wilkinson, C., Bastianello, S. S. & Bansemer M. S. Marine heatwave, harmful algae blooms and an extensive fish kill event during 2013 in South Australia. Front. Mar. Sci. 6, 610 (2019).
Suursaar, Ü. Combined impact of summer heat waves and coastal upwelling in the Baltic Sea. Oceanologia 62, 511–524 (2020).
Google Scholar
Kuroda, H., Azumaya, T., Setou, T. & Hasegawa, N. Unprecedented outbreak of harmful algae in Pacific coastal waters off southeast Hokkaido, Japan, during late summer 2021 after record-breaking marine heatwaves. J. Mar. Sci. Eng. 9, 1335 (2021).
Google Scholar
Sen Gupta, A. et al. Drivers and impacts of the most extreme marine heatwave events. Sci. Rep. 10, 19359 (2020).
Google Scholar
Noh, K. M., Lim, H.-G. & Kug, J.-S. Global chlorophyll responses to marine heatwaves in satellite ocean color. Environ. Res. Lett. 17, 064034 (2022).
Google Scholar
Lenton, A., McInnes, K. L. & O’Grady, J. G. Marine projections of warming and ocean acidification in the Australasian region. Aust. Meteorol. Oceanogr. J. 65, S1–S28 (2015).
Google Scholar
Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2013).
Google Scholar
Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
Google Scholar
Graba-Landry, A. et al. Ocean warming has greater and more consistent negative effects than ocean acidification on the growth and health of subtropical macroalgae. Mar. Ecol. Prog. Ser. 595, 55–69 (2018).
Google Scholar
Mos, B., Holloway, C., Kelaher, B. P., Santos, I. R. & Dworjanyn, S. A. Alkalinity of diverse water samples can be altered by mercury preservation and borosilicate vial storage. Sci. Rep. 11, 9961 (2021).
Google Scholar
Dickson, A. G., Sabine, C. L. & Christian, J. R. Guide to Best Practices for Ocean CO2 Measurements, Vol. 3, 191 (PICES Special Publication, 2007).
Pierrot, D., Lewis, E. & Wallace, D. W. R. MS Excel Program Developed for CO2System Calculations (U.S. Department of Energy, 2006).
Mehrbach, C., Culberson, C. H., Hawley, J. E. & Pytkowicx, R. M. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18, 897–907 (1973).
Google Scholar
Dickson, A. & Millero, F. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. A 34, 1733–1743 (1987).
Google Scholar
Haszprunar, G. & Spies, M. An integrative approach to the taxonomy of the crown-of-thorns starfish species group (Asteroidea: Acanthaster): a review of names and comparison to recent molecular data. Zootaxa 3841, 271–284 (2014).
Google Scholar
Haszprunar, G., Vogler, C. & Wörheide G. Persistent gaps of knowledge for naming and distinguishing multiple species of crown-of-thorns-seastar in the Acanthaster planci species complex. Diversity 9, 22 (2017).
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
Google Scholar
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists, 537 (Cambridge University Press, 2002).
Field, A. Discovering Statistics Using IBM SPSS Statistics 4th edn, 916 (Sage, 2013).
Mos, B., Mesic, N. & Dworjanyn, S. Data for: Variable food alters responses of larval crown-of-thorns starfish to ocean warming but not acidification. Dryad Digital Repository (2023).