Baquero, F. et al. Evolutionary pathways and trajectories in antibiotic resistance. Clin. Microbiol. Rev. 34, e0005019 (2021).
Google Scholar
Blount, Z. D., Lenski, R. E. & Losos, J. B. Contingency and determinism in evolution: replaying life’s tape. Science (2018).
Google Scholar
Hernando-Amado, S., Coque, T. M., Baquero, F. & Martinez, J. L. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 4, 1432–1442 (2019).
Google Scholar
Pinheiro, F., Warsi, O., Andersson, D. I. & Lässig, M. Metabolic fitness landscapes predict the evolution of antibiotic resistance. Nat. Ecol. Evol. 5, 677–687 (2021).
Google Scholar
Pal, C., Papp, B. & Lazar, V. Collateral sensitivity of antibiotic-resistant microbes. Trends Microbiol. 23, 401–407 (2015).
Google Scholar
Imamovic, L. & Sommer, M. O. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci. Transl Med. 5, 204ra132 (2013). This is one of the most thorough studies on collateral sensitivity networks in response to a large set of antibiotics.
Google Scholar
Herencias, C. et al. Collateral sensitivity associated with antibiotic resistance plasmids. eLife (2021). This article provides seminal information on collateral sensitivity associated with the acquisition of mobile antibiotic resistance genes.
Google Scholar
Nichol, D. et al. Antibiotic collateral sensitivity is contingent on the repeatability of evolution. Nat. Commun. 10, 334 (2019).
Google Scholar
Roemhild, R. & Andersson, D. I. Mechanisms and therapeutic potential of collateral sensitivity to antibiotics. PLoS Pathog. 17, e1009172 (2021).
Google Scholar
Allison, K. R., Brynildsen, M. P. & Collins, J. J. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473, 216–220 (2011). This article shows how priming bacterial metabolism may help to eliminate bacterial persisters by using antibiotics to which they did not respond.
Google Scholar
Baquero, F. & Martinez, J. L. Interventions on metabolism: making antibiotic-susceptible bacteria. MBio (2017).
Google Scholar
Laborda, P., Alcalde-Rico, M., Chini, A., Martinez, J. L. & Hernando-Amado, S. Discovery of inhibitors of Pseudomonas aeruginosa virulence through the search for natural-like compounds with a dual role as inducers and substrates of efflux pumps. Env. Microbiol. (2021).
Google Scholar
Knoppel, A., Nasvall, J. & Andersson, D. I. Evolution of antibiotic resistance without antibiotic exposure. Antimicrob. Agents Chemother. (2017). This article shows that bacterial populations can acquire antibiotic resistance even in the absence of antibiotic selective pressure.
Google Scholar
Baquero, F. Causality in biological transmission: forces and energies. Microbiol. Spectr. (2018).
Google Scholar
Laxminarayan, R. Antibiotic effectiveness: balancing conservation against innovation. Science 345, 1299–1301 (2014).
Google Scholar
Szybalski, W. & Bryson, V. Genetic studies on microbial cross resistance to toxic agents. I. Cross resistance of Escherichia coli to fifteen antibiotics. J. Bacteriol. 64, 489–499 (1952).
Google Scholar
Podnecky, N. L. et al. Conserved collateral antibiotic susceptibility networks in diverse clinical strains of Escherichia coli. Nat. Commun. 9, 3673 (2018). This article reports a wide study on the conservation of collateral sensitivity among a diverse set of clinical E. coli isolates.
Google Scholar
Roemhild, R., Bollenbach, T. & Andersson, D. I. The physiology and genetics of bacterial responses to antibiotic combinations. Nat. Rev. Microbiol. 20, 478–490 (2022).
Google Scholar
Lázár, V. et al. Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nat. Microbiol. 3, 718–731 (2018).
Google Scholar
Barbosa, C., Beardmore, R., Schulenburg, H. & Jansen, G. Antibiotic combination efficacy (ACE) networks for a Pseudomonas aeruginosa model. PLoS Biol. 16, e2004356 (2018).
Google Scholar
Munck, C., Gumpert, H. K., Wallin, A. I., Wang, H. H. & Sommer, M. O. Prediction of resistance development against drug combinations by collateral responses to component drugs. Sci. Transl Med. 6, 262ra156 (2014).
Google Scholar
Jahn, L. J. et al. Compatibility of evolutionary responses to constituent antibiotics drive resistance evolution to drug pairs. Mol. Biol. Evol. (2021).
Google Scholar
Imamovic, L. et al. Drug-driven phenotypic convergence supports rational treatment strategies of chronic infections. Cell 172, 121–134.e14 (2018). This article shows that phenotypic convergence displayed by different mutants can drive collateral sensitivity-based therapeutic strategies.
Google Scholar
Kim, S., Lieberman, T. D. & Kishony, R. Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance. Proc. Natl Acad. Sci. USA 111, 14494–14499 (2014).
Google Scholar
Barbosa, C., Romhild, R., Rosenstiel, P. & Schulenburg, H. Evolutionary stability of collateral sensitivity to antibiotics in the model pathogen Pseudomonas aeruginosa. eLife (2019).
Google Scholar
Baym, M., Stone, L. K. & Kishony, R. Multidrug evolutionary strategies to reverse antibiotic resistance. Science 351, aad3292 (2016).
Google Scholar
Barbosa, C. et al. Alternative evolutionary paths to bacterial antibiotic resistance cause distinct collateral effects. Mol. Biol. Evol. 34, 2229–2244 (2017). This article shows that replicate populations of the same bacterial strain can present different evolutionary pathways in the presence of antibiotics and substantial variations in collateral sensitivity.
Google Scholar
Lazar, V. et al. Bacterial evolution of antibiotic hypersensitivity. Mol. Syst. Biol. 9, 700 (2013).
Google Scholar
Lazar, V. et al. Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network. Nat. Commun. 5, 4352 (2014).
Google Scholar
Sørum, V. et al. Evolutionary instability of collateral susceptibility networks in ciprofloxacin-resistant clinical Escherichia coli strains. mBio 13, e0044122 (2022).
Google Scholar
Hernando-Amado, S., Sanz-García, F. & Martínez, J. L. Antibiotic resistance evolution is contingent on the quorum-sensing response in Pseudomonas aeruginosa. Mol. Biol. Evol. 36, 2238–2251 (2019).
Google Scholar
Vogwill, T., Kojadinovic, M. & MacLean, R. C. Epistasis between antibiotic resistance mutations and genetic background shape the fitness effect of resistance across species of Pseudomonas. Proc. Biol. Sci. (2016).
Google Scholar
Card, K. J., Thomas, M. D., Graves, J. L. Jr, Barrick, J. E. & Lenski, R. E. Genomic evolution of antibiotic resistance is contingent on genetic background following a long-term experiment with Escherichia coli. Proc. Natl Acad. Sci. USA (2021).
Google Scholar
Gambello, M. J. & Iglewski, B. H. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J. Bacteriol. 173, 3000–3009 (1991).
Google Scholar
Liakopoulos, A. et al. Allele-specific collateral and fitness effects determine the dynamics of fluoroquinolone resistance evolution. Proc. Natl Acad. Sci. USA 119, e2121768119 (2022).
Google Scholar
Beckley, A. M. & Wright, E. S. Identification of antibiotic pairs that evade concurrent resistance via a retrospective analysis of antimicrobial susceptibility test results. Lancet Microbe 2, e545–e554 (2021).
Google Scholar
Ma, Y. & Chua, S. L. No collateral antibiotic sensitivity by alternating antibiotic pairs. Lancet Microbe 3, e7 (2022).
Google Scholar
Lopez-Causape, C., Cabot, G., Del Barrio-Tofino, E. & Oliver, A. The versatile mutational resistome of Pseudomonas aeruginosa. Front. Microbiol. 9, 685 (2018).
Google Scholar
Hernando-Amado, S., Sanz-García, F. & Martínez, J. L. Rapid and robust evolution of collateral sensitivity in Pseudomonas aeruginosa antibiotic-resistant mutants. Sci. Adv. 6, eaba5493 (2020). This analysis of a set of antibiotic-resistant mutants of P. aeruginosa PA14 enables the identification of robust collateral sensitivity patterns associated with the use of ciprofloxacin.
Google Scholar
Hernando-Amado, S., Laborda, P., Valverde José, R. & Martínez José, L. Mutational background influences P. aeruginosa ciprofloxacin resistance evolution but preserves collateral sensitivity robustness. Proc. Natl Acad. Sci. USA 119, e2109370119 (2022).
Google Scholar
Hernando-Amado, S. et al. Rapid phenotypic convergence towards collateral sensitivity in clinical isolates of Pseudomonas aeruginosa presenting different genomic backgrounds. Microbiol. Spectr. 11, e0227622 (2022). This study shows that robust collateral sensitivity patterns associated with the use of ciprofloxacin emerge in clinical strains of P. aeruginosa having different genomic backgrounds and mutational resistomes.
Google Scholar
Laborda, P., Martinez, J. L. & Hernando-Amado, S. Convergent phenotypic evolution towards fosfomycin collateral sensitivity of Pseudomonas aeruginosa antibiotic-resistant mutants. Microb. Biotechnol. (2021). This article shows that different resistant mutants, selected by different antibiotics, present convergent collateral sensitivity to fosfomycin.
Google Scholar
Roemhild, R., Linkevicius, M. & Andersson, D. I. Molecular mechanisms of collateral sensitivity to the antibiotic nitrofurantoin. PLoS Biol. 18, e3000612 (2020).
Google Scholar
Laborda, P., Martínez, J. L. & Hernando-Amado, S. Evolution of habitat-dependent antibiotic resistance in Pseudomonas aeruginosa. Microbiol. Spectr. 10, e0024722 (2022).
Google Scholar
Allen, R. C., Pfrunder-Cardozo, K. R. & Hall, A. R. Collateral sensitivity interactions between antibiotics depend on local abiotic conditions. mSystems 6, e0105521 (2021).
Google Scholar
Rodriguez de Evgrafov, M. C., Faza, M., Asimakopoulos, K. & Sommer, M. O. A. Systematic investigation of resistance evolution to common antibiotics reveals conserved collateral responses across common human pathogens. Antimicrob. Agents Chemother. (2020).
Google Scholar
Apjok, G. et al. Limited evolutionary conservation of the phenotypic effects of antibiotic resistance mutations. Mol. Biol. Evol. (2019).
Google Scholar
Hernando-Amado, S., Laborda, P. & Martínez, J. L. Tackling antibiotic resistance by inducing transient and robust collateral sensitivity. Nat. Commun. 14, 1723 (2023). This article shows that transient antibiotic resistance is associated with robust collateral sensitivity. Therefore, this trade-off can be exploited without the need to select antibiotic-resistant mutants.
Google Scholar
van Duijn, P. J. et al. The effects of antibiotic cycling and mixing on antibiotic resistance in intensive care units: a cluster-randomised crossover trial. Lancet Infect. Dis. 18, 401–409 (2018).
Google Scholar
Freihofer, P. et al. Nonmutational compensation of the fitness cost of antibiotic resistance in mycobacteria by overexpression of tlyA rRNA methylase. RNA 22, 1836–1843 (2016).
Google Scholar
Shcherbakov, D. et al. Directed mutagenesis of Mycobacterium smegmatis 16S rRNA to reconstruct the in-vivo evolution of aminoglycoside resistance in Mycobacterium tuberculosis. Mol. Microbiol. 77, 830–840 (2010).
Google Scholar
Durão, P., Trindade, S., Sousa, A. & Gordo, I. Multiple resistance at no cost: rifampicin and streptomycin a dangerous liaison in the spread of antibiotic resistance. Mol. Biol. Evol. 32, 2675–2680 (2015).
Google Scholar
Olivares Pacheco, J., Alvarez-Ortega, C., Alcalde Rico, M. & Martinez, J. L. Metabolic compensation of fitness costs is a general outcome for antibiotic-resistant Pseudomonas aeruginosa mutants overexpressing efflux pumps. mBio 8, (2017). This article provides evidence that fitness costs associated with the acquisition of resistance can be compensated for by metabolic rewiring.
Baquero, F. et al. Allogenous selection of mutational collateral resistance: old drugs select for new resistance within antibiotic families. Front. Microbiol. 12, 757833 (2021).
Google Scholar
Nichol, D., Bonomo, R. A. & Scott, J. G. It’s too soon to pull the plug on antibiotic cycling. Lancet Infect. Dis. 18, 493 (2018). This article asserts that empirical evidence is not sufficient to validate the effectiveness of antibiotic cycling in reducing antibiotic resistance.
Google Scholar
Andersson, D. I. & Hughes, D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8, 260–271 (2010).
Google Scholar
Dunai, A. et al. Rapid decline of bacterial drug-resistance in an antibiotic-free environment through phenotypic reversion. eLife (2019). This article shows that decline of antibiotic resistance in the absence of selection is drug specific.
Google Scholar
Hernando-Amado, S., Laborda, P., Valverde, J. R. & Martínez, J. L. Rapid decline of ceftazidime resistance in antibiotic-free and sublethal environments is contingent on genetic background. Mol. Biol. Evol. (2022).
Google Scholar
Trindade, S. et al. Positive epistasis drives the acquisition of multidrug resistance. PLoS Genet. 5, e1000578 (2009).
Google Scholar
Ward, H., Perron, G. G. & Maclean, R. C. The cost of multiple drug resistance in Pseudomonas aeruginosa. J. Evol. Biol. 22, 997–1003 (2009).
Google Scholar
Salverda, M. L. et al. Initial mutations direct alternative pathways of protein evolution. PLoS Genet. 7, e1001321 (2011).
Google Scholar
Lopatkin, A. J. et al. Clinically relevant mutations in core metabolic genes confer antibiotic resistance. Science (2021). This article shows that the mutation of metabolic genes may confer antibiotic resistance, providing a linkage between metabolism and resistance to antimicrobials.
Google Scholar
Gil-Gil, T. & Martínez, J. L. Fosfomycin resistance evolutionary pathways of Stenotrophomonas maltophilia in different growing conditions. Int. J. Mol. Sci. (2022).
Google Scholar
Gil-Gil, T., Corona, F., Martinez, J. L. & Bernardini, A. The inactivation of enzymes belonging to the central carbon metabolism is a novel mechanism of developing antibiotic resistance. mSystems (2020).
Google Scholar
Zampieri, M. et al. Metabolic constraints on the evolution of antibiotic resistance. Mol. Syst. Biol. 13, 917 (2017). This study shows that growth under glycolytic or gluconeogenic conditions modifies antibiotic resistance trajectories. The acquisition of resistance modifies bacterial metabolism, rendering weaknesses in resistant strains.
Google Scholar
Shewaramani, S. et al. Anaerobically grown Escherichia coli has an enhanced mutation rate and distinct mutational spectra. PLoS Genet. 13, e1006570 (2017).
Google Scholar
Su, Y. B., Kuang, S. F., Peng, X. X. & Li, H. The depressed P cycle contributes to the acquisition of ampicillin resistance in Edwardsiella piscicida. J. Proteom. 212, 103562 (2020).
Google Scholar
Balaban, N. Q. et al. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol. 17, 441–448 (2019).
Google Scholar
Andersson, D. I., Nicoloff, H. & Hjort, K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat. Rev. Microbiol. 17, 479–496 (2019).
Google Scholar
Bjorkman, J., Nagaev, I., Berg, O. G., Hughes, D. & Andersson, D. I. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science 287, 1479–1482 (2000). This seminal work shows that fitness cost associated with antibiotic resistance is not merely a non-specific growth defect and that this cost, and the mutations compensating for it, are environment specific.
Google Scholar
Scortti, M. et al. Coexpression of virulence and fosfomycin susceptibility in Listeria: molecular basis of an antimicrobial in vitro–in vivo paradox. Nat. Med. 12, 515–517 (2006).
Google Scholar
Baquero, F., Lanza, V. F., Baquero, M. R., Del Campo, R. & Bravo-Vázquez, D. A. Microcins in Enterobacteriaceae: peptide antimicrobials in the eco-active intestinal chemosphere. Front. Microbiol. 10, 2261 (2019).
Google Scholar
Wayne, L. G. & Sramek, H. A. Metronidazole is bactericidal to dormant cells of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 38, 2054–2058 (1994).
Google Scholar
Lin, P. L. et al. Metronidazole prevents reactivation of latent Mycobacterium tuberculosis infection in macaques. Proc. Natl Acad. Sci. USA 109, 14188–14193 (2012).
Google Scholar
Chung, W. Y. et al. Exogenous metabolite feeding on altering antibiotic susceptibility in Gram-negative bacteria through metabolic modulation: a review. Metabolomics 18, 47 (2022).
Google Scholar
Fortuin, S. & Soares, N. C. The integration of proteomics and metabolomics data paving the way for a better understanding of the mechanisms underlying microbial acquired drug resistance. Front. Med. 9, 849838 (2022).
Google Scholar
Gardner, S. G., Marshall, D. D., Daum, R. S., Powers, R. & Somerville, G. A. Metabolic mitigation of Staphylococcus aureus vancomycin intermediate-level susceptibility. Antimicrob. Agents Chemother. (2018).
Google Scholar
Zhao, X. L. et al. Glutamine promotes antibiotic uptake to kill multidrug-resistant uropathogenic bacteria. Sci. Transl Med. 13, eabj0716 (2021).
Google Scholar
Grézal, G. et al. Plasticity and stereotypic rewiring of the transcriptome upon bacterial evolution of antibiotic resistance. Mol. Biol. Evol. (2023). This study shows that antibiotic-resistant E. coli mutants selected by different antibiotics display convergent transcriptomic changes, possibly through convergent regulatory rewiring of the multidrug transport system, which renders increased susceptibility to antimicrobial peptides.
Google Scholar
Su, Y. B. et al. Pyruvate cycle increases aminoglycoside efficacy and provides respiratory energy in bacteria. Proc. Natl Acad. Sci. USA 115, E1578–E1587 (2018).
Google Scholar
Arrieta-Ortiz, M. L. et al. Disrupting the ArcA regulatory network amplifies the fitness cost of tetracycline resistance in Escherichia coli. mSystems, 8, e0090422 (2022). This study shows how understanding metabolic changes associated with the acquisition of antibiotic resistance may enable the identification of a compound that hampers antibiotic resistance.
Google Scholar
Vestergaard, M. et al. Inhibition of the ATP synthase eliminates the intrinsic resistance of Staphylococcus aureus towards polymyxins. mBio (2017).
Google Scholar
Kim, H. J. et al. Pharmacological perturbation of thiamine metabolism sensitizes Pseudomonas aeruginosa to multiple antibacterial agents. Cell Chem. Biol. 29, 1317–1324.e5 (2022).
Google Scholar
Jiang, M. et al. Na+-NQR confers aminoglycoside resistance via the regulation of l-alanine metabolism. mBio (2020).
Google Scholar
Ye, J. Z. et al. Identification and efficacy of glycine, serine and threonine metabolism in potentiating kanamycin-mediated killing of Edwardsiella piscicida. J. Proteom. 183, 34–44 (2018).
Google Scholar
Peng, B. et al. Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria. Cell Metab. 21, 249–262 (2015).
Google Scholar
Campbell, C. et al. Accumulation of succinyl coenzyme a perturbs the methicillin-resistant Staphylococcus aureus (MRSA) succinylome and is associated with increased susceptibility to beta-lactam antibiotics. mBio 12, e0053021 (2021).
Google Scholar
Furniss, R. C. D. et al. Breaking antimicrobial resistance by disrupting extracytoplasmic protein folding. eLife (2022).
Google Scholar
Linares, J. F. et al. The global regulator Crc modulates metabolism, susceptibility to antibiotics and virulence in Pseudomonas aeruginosa. Env. Microbiol. 12, 3196–3212 (2010).
Google Scholar
Zhu, Y. et al. Genome-scale metabolic modeling of responses to polymyxins in Pseudomonas aeruginosa. GigaScience (2018).
Google Scholar
Heinemann, M., Kummel, A., Ruinatscha, R. & Panke, S. In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network. Biotechnol. Bioeng. 92, 850–864 (2005). This seminal work shows how the study of metabolic networks may provide information about the mechanisms of antibiotic resistance.
Google Scholar
Rêgo, A. M. et al. Metabolic profiles of multidrug resistant and extensively drug resistant Mycobacterium tuberculosis unveiled by metabolomics. Tuberculosis 126, 102043 (2020).
Google Scholar
Zampieri, M., Zimmermann, M., Claassen, M. & Sauer, U. Nontargeted metabolomics reveals the multilevel response to antibiotic perturbations. Cell Rep. 19, 1214–1228 (2017).
Google Scholar
Martinez, J. L. et al. A global view of antibiotic resistance. FEMS Microbiol. Rev. 33, 44–65 (2009).
Google Scholar
Sanz-García, F. et al. Coming from the wild: multidrug resistant opportunistic pathogens presenting a primary, not human-linked, environmental habitat. Int. J. Mol. Sci. (2021).
Google Scholar
Fajardo, A. et al. The neglected intrinsic resistome of bacterial pathogens. PLoS ONE 3, e1619 (2008).
Google Scholar
Martinez, J. L. Antibiotics and antibiotic resistance genes in natural environments. Science 321, 365–367 (2008).
Google Scholar
Payie, K. G. & Clarke, A. J. Characterization of gentamicin 2′-N-acetyltransferase from Providencia stuartii: its use of peptidoglycan metabolites for acetylation of both aminoglycosides and peptidoglycan. J. Bacteriol. 179, 4106–4114 (1997).
Google Scholar
Henderson, T. A., Young, K. D., Denome, S. A. & Elf, P. K. AmpC and AmpH, proteins related to the class C beta-lactamases, bind penicillin and contribute to the normal morphology of Escherichia coli. J. Bacteriol. 179, 6112–6121 (1997).
Google Scholar
Santos, J. M., Lobo, M., Matos, A. P., De Pedro, M. A. & Arraiano, C. M. The gene bolA regulates dacA (PBP5), dacC (PBP6) and ampC (AmpC), promoting normal morphology in Escherichia coli. Mol. Microbiol. 45, 1729–1740 (2002).
Google Scholar
Torrens, G. et al. Regulation of AmpC-driven β-lactam resistance in Pseudomonas aeruginosa: different pathways, different signaling. mSystems (2019).
Google Scholar
Bernat, B. A., Laughlin, L. T. & Armstrong, R. N. Fosfomycin resistance protein (FosA) is a manganese metalloglutathione transferase related to glyoxalase I and the extradiol dioxygenases. Biochemistry 36, 3050–3055 (1997).
Google Scholar
Allocati, N., Federici, L., Masulli, M. & Di Ilio, C. Glutathione transferases in bacteria. FEBS J. 276, 58–75 (2009).
Google Scholar
Kim, H. B., Park, C. H., Gavin, M., Jacoby, G. A. & Hooper, D. C. Cold shock induces qnrA expression in Shewanella algae. Antimicrob. Agents Chemother. 55, 414–416 (2011).
Google Scholar
Blanco, P. et al. Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms (2016).
Google Scholar
Vargas, P. et al. Plant flavonoids target Pseudomonas syringae pv. tomato DC3000 flagella and type III secretion system. Environ. Microbiol. Rep. 5, 841–850 (2013).
Google Scholar
Garcia-Leon, G. et al. A function of SmeDEF, the major quinolone resistance determinant of Stenotrophomonas maltophilia, is the colonization of plant roots. Appl. Environ. Microbiol. 80, 4559–4565 (2014).
Google Scholar
Lyu, M. et al. Structural basis of peptide-based antimicrobial inhibition of a resistance-nodulation-cell division multidrug efflux pump. Microbiol. Spectr. 10, e0299022 (2022).
Google Scholar
Sanz-Garcia, F. et al. Mycobacterial aminoglycoside acetyltransferases: a little of drug resistance, and a lot of other roles. Front. Microbiol. 10, 46 (2019).
Google Scholar
Duan, L., Yi, M., Chen, J., Li, S. & Chen, W. Mycobacterium tuberculosis EIS gene inhibits macrophage autophagy through up-regulation of IL-10 by increasing the acetylation of histone H3. Biochem. Biophys. Res. Commun. 473, 1229–1234 (2016).
Google Scholar
Li, Y., Green, K. D., Johnson, B. R. & Garneau-Tsodikova, S. Inhibition of aminoglycoside acetyltransferase resistance enzymes by metal salts. Antimicrob. Agents Chemother. 59, 4148–4156 (2015).
Google Scholar
Hitch, T. C. A. et al. Automated analysis of genomic sequences facilitates high-throughput and comprehensive description of bacteria. ISME Commun. 1, 16 (2021).
Google Scholar
Forster, S. C. et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat. Biotechnol. 37, 186–192 (2019).
Google Scholar
Neville, B. A., Forster, S. C. & Lawley, T. D. Commensal Koch’s postulates: establishing causation in human microbiota research. Curr. Opin. Microbiol. 42, 47–52 (2018).
Google Scholar
Feehan, A. & Garcia-Diaz, J. Bacterial, gut microbiome-modifying therapies to defend against multidrug resistant organisms. Microorganisms (2020).
Google Scholar
Huddleston, J. R. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect. Drug Resist. 7, 167–176 (2014).
Google Scholar
Hyun, J. et al. Faecal microbiota transplantation reduces amounts of antibiotic resistance genes in patients with multidrug-resistant organisms. Antimicrob. Resist. Infect. Control. 11, 20 (2022).
Google Scholar
Millan, B. et al. Fecal microbial transplants reduce antibiotic-resistant genes in patients with recurrent Clostridium difficile infection. Clin. Infect. Dis. 62, 1479–1486 (2016). The article provides information on the use of microbiome transplantation for fighting infections by highly resistant bacteria.
Google Scholar
Leo, S. et al. Metagenomic characterization of gut microbiota of carriers of extended-spectrum beta-lactamase or carbapenemase-producing Enterobacteriaceae following treatment with oral antibiotics and fecal microbiota transplantation: results from a multicenter randomized trial. Microorganisms (2020).
Google Scholar
Singh, R. et al. Fecal microbiota transplantation against intestinal colonization by extended spectrum beta-lactamase producing Enterobacteriaceae: a proof of principle study. BMC Res. Notes 11, 190 (2018).
Google Scholar
DeFilipp, Z. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381, 2043–2050 (2019).
Google Scholar
Lesbros-Pantoflickova, D., Corthesy-Theulaz, I. & Blum, A. L. Helicobacter pylori and probiotics. J. Nutr. 137, 812S–818S (2007).
Google Scholar
Lin, Y. C. et al. Probiotic Bacillus affects Enterococcus faecalis antibiotic resistance transfer by interfering with pheromone signaling cascades. Appl. Environ. Microbiol. 87, e00442-21 (2021).
Google Scholar
Lazdins, A. et al. Potentiation of curing by a broad-host-range self-transmissible vector for displacing resistance plasmids to tackle AMR. PLoS ONE 15, e0225202 (2020).
Google Scholar
Wieers, G. et al. Do probiotics during in-hospital antibiotic treatment prevent colonization of gut microbiota with multi-drug-resistant bacteria? A randomized placebo-controlled trial comparing Saccharomyces to a mixture of Lactobacillus, Bifidobacterium, and Saccharomyces. Front. Public Health 8, 578089 (2020).
Google Scholar
Ouwehand, A. C., Forssten, S., Hibberd, A. A., Lyra, A. & Stahl, B. Probiotic approach to prevent antibiotic resistance. Ann. Med. 48, 246–255 (2016).
Google Scholar
Gueimonde, M., Sanchez, B., de Los Reyes-Gavilán, C. G. & Margolles, A. Antibiotic resistance in probiotic bacteria. Front. Microbiol. 4, 202 (2013).
Google Scholar
Esaiassen, E. et al. Bifidobacterium longum subspecies infantis bacteremia in 3 extremely preterm infants receiving probiotics. Emerg. Infect. Dis. 22, 1664–1666 (2016).
Google Scholar
Dharmaratne, P., Rahman, N., Leung, A. & Ip, M. Is there a role of faecal microbiota transplantation in reducing antibiotic resistance burden in gut? A systematic review and meta-analysis. Ann. Med. 53, 662–681 (2021).
Google Scholar
Cavallo, F. M., Jordana, L., Friedrich, A. W., Glasner, C. & van Dijl, J. M. Bdellovibrio bacteriovorus: a potential ‘living antibiotic’ to control bacterial pathogens. Crit. Rev. Microbiol. 47, 630–646 (2021).
Google Scholar
Perez, J., Contreras-Moreno, F. J., Marcos-Torres, F. J., Moraleda-Munoz, A. & Munoz-Dorado, J. The antibiotic crisis: how bacterial predators can help. Comput. Struct. Biotechnol. J. 18, 2547–2555 (2020).
Google Scholar
Saralegui, C. et al. Strain-specific predation of Bdellovibrio bacteriovorus on Pseudomonas aeruginosa with a higher range for cystic fibrosis than for bacteremia isolates. Sci. Rep. 12, 10523 (2022).
Google Scholar
Snyder, A. R., Williams, H. N., Baer, M. L., Walker, K. E. & Stine, O. C. 16S rDNA sequence analysis of environmental Bdellovibrio-and-like organisms (BALO) reveals extensive diversity. Int. J. Syst. Evol. Microbiol. 52, 2089–2094 (2002).
Google Scholar
Atterbury, R. J. & Tyson, J. Predatory bacteria as living antibiotics — where are we now? Microbiology (2021). This article is a recent review on the potential use of bacterial predators for fighting infections.
Google Scholar
Bratanis, E., Andersson, T., Lood, R. & Bukowska-Faniband, E. Biotechnological potential of Bdellovibrio and like organisms and their secreted enzymes. Front. Microbiol. 11, 662 (2020).
Google Scholar
Im, H., Choi, S. Y., Son, S. & Mitchell, R. J. Combined application of bacterial predation and violacein to kill polymicrobial pathogenic communities. Sci. Rep. 7, 14415 (2017).
Google Scholar
Marine, E., Milner, D. S., Lambert, C., Sockett, R. E. & Pos, K. M. A novel method to determine antibiotic sensitivity in Bdellovibrio bacteriovorus reveals a DHFR-dependent natural trimethoprim resistance. Sci. Rep. 10, 5315 (2020).
Google Scholar
Bornier, F. et al. Environmental free-living amoebae can predate on diverse antibiotic-resistant human pathogens. Appl. Environ. Microbiol. 87, e0074721 (2021).
Google Scholar
Pérez-Acevedo, G., Bosch-Alcaraz, A. & Torra-Bou, J. E. Larval therapy for treatment of chronic wounds colonized by multi-resistant pathogens in a pediatric patient: a case study. J. Wound Ostomy Cont. Nurs. 49, 373–378 (2022).
Google Scholar
Negus, D. et al. Predator versus pathogen: how does predatory Bdellovibrio bacteriovorus interface with the challenges of killing gram-negative pathogens in a host setting? Annu. Rev. Microbiol. 71, 441–457 (2017).
Google Scholar
Sanchez, P. et al. Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants. J. Antimicrob. Chemother. 50, 657–664 (2002).
Google Scholar
Merker, M. et al. Evolutionary approaches to combat antibiotic resistance: opportunities and challenges for precision medicine. Front. Immunol. 11, 1938 (2020).
Google Scholar
Di Venanzio, G. et al. Multidrug-resistant plasmids repress chromosomally encoded T6SS to enable their dissemination. Proc. Natl Acad. Sci. USA 116, 1378–1383 (2019).
Google Scholar
Banerji, A., Jahne, M., Herrmann, M., Brinkman, N. & Keely, S. Bringing community ecology to bear on the issue of antimicrobial resistance. Front. Microbiol. 10, 2626 (2019).
Google Scholar
Bottery, M. J. et al. Inter-species interactions alter antibiotic efficacy in bacterial communities. ISME J. 16, 812–821 (2022).
Google Scholar
Adamowicz, E. M., Muza, M., Chacon, J. M. & Harcombe, W. R. Cross-feeding modulates the rate and mechanism of antibiotic resistance evolution in a model microbial community of Escherichia coli and Salmonella enterica. PLoS Pathog. 16, e1008700 (2020).
Google Scholar
Flynn, J. M. et al. Disruption of cross-feeding inhibits pathogen growth in the sputa of patients with cystic fibrosis. mSphere (2020).
Google Scholar
O’Brien, S., Baumgartner, M. & Hall, A. R. Species interactions drive the spread of ampicillin resistance in human-associated gut microbiota. Evol. Med. Public Health 9, 256–266 (2021).
Google Scholar
Baumgartner, M., Bayer, F., Pfrunder-Cardozo, K. R., Buckling, A. & Hall, A. R. Resident microbial communities inhibit growth and antibiotic-resistance evolution of Escherichia coli in human gut microbiome samples. PLoS Biol. 18, e3000465 (2020).
Google Scholar
Alcalde-Rico, M., Hernando-Amado, S., Blanco, P. & Martinez, J. L. Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Front. Microbiol. 7, 1483 (2016).
Google Scholar
Wang-Kan, X. et al. Lack of AcrB efflux function confers loss of virulence on Salmonella enterica serovar Typhimurium. mBio (2017).
Google Scholar
Warner, D. M., Folster, J. P., Shafer, W. M. & Jerse, A. E. Regulation of the MtrC-MtrD-MtrE efflux-pump system modulates the in vivo fitness of Neisseria gonorrhoeae. J. Infect. Dis. 196, 1804–1812 (2007).
Google Scholar
Palmer, A. C. & Kishony, R. Understanding, predicting and manipulating the genotypic evolution of antibiotic resistance. Nat. Rev. Genet. 14, 243–248 (2013).
Google Scholar
Garcia-Leon, G., Salgado, F., Oliveros, J. C., Sanchez, M. B. & Martinez, J. L. Interplay between intrinsic and acquired resistance to quinolones in Stenotrophomonas maltophilia. Env. Microbiol. 16, 1282–1296 (2014).
Google Scholar
Finney-Manchester, S. P. & Maheshri, N. Harnessing mutagenic homologous recombination for targeted mutagenesis in vivo by TaGTEAM. Nucleic Acids Res. 41, e99 (2013).
Google Scholar
Ma, L. et al. CRISPR-Cas9-mediated saturated mutagenesis screen predicts clinical drug resistance with improved accuracy. Proc. Natl Acad. Sci. USA 114, 11751–11756 (2017).
Google Scholar
Nyerges, A. et al. Directed evolution of multiple genomic loci allows the prediction of antibiotic resistance. Proc. Natl Acad. Sci. USA 115, E5726–E5735 (2018).
Google Scholar
Álvarez, B., Mencía, M., de Lorenzo, V. & Fernández, L. In vivo diversification of target genomic sites using processive base deaminase fusions blocked by dCas9. Nat. Commun. 11, 6436 (2020).
Google Scholar
O’Neill, A. J. & Chopra, I. Use of mutator strains for characterization of novel antimicrobial agents. Antimicrob. Agents Chemother. 45, 1599–1600 (2001).
Google Scholar
Sanz-García, F., Hernando-Amado, S. & Martínez, J. L. Mutation-driven evolution of Pseudomonas aeruginosa in the presence of either ceftazidime or ceftazidime-avibactam. Antimicrob. Agents Chemother. (2018).
Google Scholar
La Rosa, R., Rossi, E., Feist, A. M., Johansen, H. K. & Molin, S. Compensatory evolution of Pseudomonas aeruginosa’s slow growth phenotype suggests mechanisms of adaptation in cystic fibrosis. Nat. Commun. 12, 3186 (2021). This is a study on the in vivo evolution of P. aeruginosa causing chronic infections in patients with cystic fibrosis who are heavily treated with antibiotics.
Google Scholar
Luria, S. E. & Delbruck, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943).
Google Scholar
Navas, A. et al. Experimental validation of Haldane’s hypothesis on the role of infection as an evolutionary force for Metazoans. Proc. Natl Acad. Sci. USA 104, 13728–13731 (2007).
Google Scholar
Hughes, D. & Andersson, D. I. Evolutionary trajectories to antibiotic resistance. Annu. Rev. Microbiol. 71, 579–596 (2017).
Google Scholar
Gould, S. J. & Vrba, S. Exaptation: a missing term in the science of form. Paleobiology 8, 4–15 (1982).
Google Scholar