Acclimatisation (6 January 1877) Southland Times. Page 2. Accessed 21 January 2022
Adamack AT, Gruber B (2014) PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol Evol 5:384–387. https://doi.org/10.1111/2041-210x.12158
Google Scholar
Andrews S (2010) FastQC. A quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet 17:81–92. https://doi.org/10.1038/nrg.2015.28
Google Scholar
Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA et al. (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLOS ONE 3:e3376. https://doi.org/10.1371/journal.pone.0003376
Google Scholar
Baker AJ, Moeed A (1979) Evolution in the introduced New Zealand populations of the common myna, Acridotheres tristis (Aves: Sturnidae). Can J Zool 57:570–584. https://doi.org/10.1139/z79-067
Google Scholar
Baker AJ, Moeed A (1980) Morphometric variation in Indian samples of the Common myna, Acridotheres tristis (Aves: Sturnidae). Bijdragen tot de Dierkd 50:351–363. https://doi.org/10.1163/26660644-05002005
Google Scholar
Baker AJ, Moeed A (1987) Rapid genetic differentiation and founder effect in colonizing populations of common mynas (Acridotheres tristis). Evolution 41:525–538. https://doi.org/10.1111/j.1558-5646.1987.tb05823.x
Google Scholar
Beesley A, Whibley A, Santure AW, Battles HT (2023) The introduction and distribution history of the common myna (Acridotheres tristis) in New Zealand. N Z J Zool 1–13. https://doi.org/10.1080/03014223.2023.2182332
Bell BD (1976) Status of Great Barrier Island birds. Notornis 23:310–319
Bell BD, Brathwaite DH (1964) The birds of Great Barrier and Arid Islands. Notornis 10:363–383
BirdLife International and Handbook of the Birds of the World. (2016). Acridotheres tristis (spatial data). In The IUCN Red List of Threatened Species. Version 2021-3. https://www.iucnredlist.org
CAB International (2021) Acridotheres tristis (common myna). Accessed 19 January 2022
Cassey P, Prowse TAA, Blackburn TM (2014) A population model for predicting the successful establishment of introduced bird species. Oecologia 175:417–428. https://doi.org/10.1007/s00442-014-2902-1
Google Scholar
Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140. https://doi.org/10.1111/mec.12354
Google Scholar
Cheke AS, Hume JP (2008) Lost land of the dodo: an ecological history of Mauritius, Réunion & Rodrigues. Yale University Press, London
Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560
Google Scholar
Clark NJ, Olsson-Pons S, Ishtiaq F, Clegg SM (2015) Specialist enemies, generalist weapons and the potential spread of exotic pathogens: malaria parasites in a highly invasive bird. Int J Parasitol 45:891–899. https://doi.org/10.1016/j.ijpara.2015.08.008
Google Scholar
Clavero M, García-Berthou E (2005) Invasive species are a leading cause of animal extinctions. Trends Ecol Evol 20:110–110. https://doi.org/10.1016/j.tree.2005.01.003
Google Scholar
Cruz VMV, Kilian A, Dierig DA (2013) Development of DArT Marker Platforms and Genetic Diversity Assessment of the U.S. Collection of the New Oilseed Crop Lesquerella and Related Species. PLOS ONE 8:e64062. https://doi.org/10.1371/journal.pone.0064062
Google Scholar
Cunningham JM (1948) Distribution of myna in N.Z. Notornis 3:57–64
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA et al. (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158. https://doi.org/10.1093/bioinformatics/btr330
Google Scholar
Dawson DG, Bull PC (1970) A questionnaire survey of bird damage to fruit. NZ J Agric Res 13:362–371. https://doi.org/10.1080/00288233.1970.10425409
Google Scholar
Evans T, Kumschick S, Şekercioğlu ÇH, Blackburn TM (2018) Identifying the factors that determine the severity and type of alien bird impacts. Divers Distrib 24:800–810. https://doi.org/10.1111/ddi.12721
Google Scholar
Ewart KM, Griffin AS, Johnson RN, Kark S, Magory Cohen T, Lo N et al. (2019) Two speed invasion: assisted and intrinsic dispersal of common mynas over 150 years of colonization. J Biogeogr 46:45–57. https://doi.org/10.1111/jbi.13473
Google Scholar
Ewels P, Magnusson M, Lundin S, Käller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048. https://doi.org/10.1093/bioinformatics/btw354
Google Scholar
Excoffier L, Marchi N, Marques DA, Matthey-Doret R, Gouy A, Sousa VC (2021) fastsimcoal2: demographic inference under complex evolutionary scenarios. Bioinformatics 37:4882–4885. https://doi.org/10.1093/bioinformatics/btab468
Feare CJ, Bristol RM, van de Crommenacker J (2021) Eradication of a highly invasive bird, the common myna Acridotheres tristis, facilitates the establishment of insurance populations of island endemic birds. Bird Conserv Int 32:439–459. https://doi.org/10.1017/s0959270921000435
Google Scholar
Feare C, Craig A (1999) Starlings and mynas. Princeton University Press, Princeton, New Jersey.
Fleischer RC, Williams RN, Baker AJ (1991) Genetic variation within and among populations of the Common Myna (Acridotheres tristis) in Hawaii. J Hered 82:205–208. https://doi.org/10.1093/oxfordjournals.jhered.a111066
Google Scholar
Forsdick NJ, Martini D, Brown L, Cross HB, Maloney RF, Steeves TE et al. (2021) Genomic sequencing confirms absence of introgression despite past hybridisation between a critically endangered bird and its common congener. Glob Ecol Conserv 28:e01681. https://doi.org/10.1016/j.gecco.2021.e01681
Google Scholar
Fournier A, Penone C, Pennino MG, Courchamp F (2019) Predicting future invaders and future invasions. Proc Natl Acad Sci USA 116:7905–7910. https://doi.org/10.1073/pnas.1803456116
Google Scholar
Francis RM (2017) pophelper: an R package and web app to analyse and visualize population structure. Mol Ecol Resour 17:27–32. https://doi.org/10.1111/1755-0998.12509
Google Scholar
Frichot E, François O (2015) LEA: An R package for landscape and ecological association studies. Methods Ecol Evol 6:925–929. https://doi.org/10.1111/2041-210x.12382
Google Scholar
Global Invasive Species Database (2021) Species profile: Acridotheres tristis. Accessed 14 November 2021
Graffelman J (2015) Exploring diallelic genetic markers: the HardyWeinberg package. J Stat Softw 64:1–23. https://doi.org/10.18637/jss.v064.i03
Google Scholar
Graffelman J, Camarena JM (2008) Graphical tests for Hardy-Weinberg Equilibrium based on the ternary plot. Hum Hered 65:77–84. https://doi.org/10.1159/000108939
Google Scholar
Gruber B, Adamack AT (2015) landgenreport: a new R function to simplify landscape genetic analysis using resistance surface layers. Mol Ecol Resour 15:1172–1178. https://doi.org/10.1111/1755-0998.12381
Google Scholar
Gruber B, Unmack PJ, Berry OF, Georges A (2018) DARTR: An R package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol Ecol Resour 18:691–699. https://doi.org/10.1111/1755-0998.12745
Google Scholar
Hart LA, Rogers AM, van Rensburg BJ (2020) Common Myna (Acridotheres tristis Linnaeus, 1766). In: Downs CT, Hart LA (eds) Invasive birds: global trends and impacts, CAB International, Wallingford, pp 25–32.
Hawke’s bay acclimatisation society (20 March 1877) Hawke’s Bay Herald. Page 2. Accessed 21 January 2022
Heather BD, Robertson HA (2015) The field guide to the birds of New Zealand, 4th edn. Penguin Random House New Zealand Limited, Auckland.
Hofmeister NR, Werner SJ, Lovette IJ (2021) Environmental correlates of genetic variation in the invasive european starling in North America. Mol Ecol 30:1251–1263. https://doi.org/10.1111/mec.15806
Google Scholar
Hone J (1978) Introduction and spread of the common myna in New South Wales. Emu 78:227–230. https://doi.org/10.1071/mu9780227
Google Scholar
Huddleston F Mr Huddleston and the acclimatisation society. Nelson Evening Mail. Accessed 13 December 2021
Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18. https://doi.org/10.1111/j.1365-2664.2008.01600.x
Google Scholar
Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189. https://doi.org/10.1111/j.1471-8286.2004.00845.x
Google Scholar
Kekkonen J, Seppä P, Hanski IK, Jensen H, Väisänen RA, Brommer JE (2011) Low genetic differentiation in a sedentary bird: house sparrow population genetics in a contiguous landscape. Heredity (Edinb) 106:183–190. https://doi.org/10.1038/hdy.2010.32
Google Scholar
Ketema S, Tesfaye B, Keneni G, Amsalu Fenta B, Assefa E, Greliche N et al. (2020) DArTSeq SNP-based markers revealed high genetic diversity and structured population in Ethiopian cowpea [Vigna unguiculata (L.) Walp] germplasms. PLOS ONE 15:1–20. https://doi.org/10.1371/journal.pone.0239122
Google Scholar
Kilian A, Wenzl P, Huttner E, Carling J, Xia L, Blois H et al. (2012) Diversity Arrays Technology: A Generic Genome Profiling Technology on Open Platforms. Methods Mol Biol 888:67–89. https://doi.org/10.1007/978-1-61779-870-2_5
Google Scholar
Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993. https://doi.org/10.1093/bioinformatics/btr509
Google Scholar
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352
Google Scholar
Long JL (1981) Introduced birds of the world: the worldwide history, distribution, and influence of birds introduced to new environments. David & Charles, Newton Abbot.
Luque GM, Bellard C, Bertelsmeier C, Bonnaud E, Genovesi P, Simberloff D et al. (2014) The 100th of the world’s worst invasive alien species. Biol Invasions 16:981–985. https://doi.org/10.1007/s10530-013-0561-5
Google Scholar
Luu K, Bazin E, Blum MGB (2017) pcadapt: an R package to perform genome scans for selection based on principal component analysis. Mol Ecol Resour 17:67–77. https://doi.org/10.1111/1755-0998.12592
Google Scholar
Marrs RA, Sforza R, Hufbauer RA (2008) When invasion increases population genetic structure: a study with Centaurea diffusa. Biol Invasions 10:561–572. https://doi.org/10.1007/s10530-007-9153-6
Google Scholar
Matheson P, McGaughran A (2022) Genomic data is missing for many highly invasive species, restricting our preparedness for escalating incursion rates. Sci Rep. 12:1–8. https://doi.org/10.1038/s41598-022-17937-y
Google Scholar
McCoy F, Ferguson JM, MacGillivray PH, Wild JJ (1885) Natural history of Victoria: Prodromus of the zoology of Victoria, or, figures and descriptions of the living species of all classes of the Victorian indigenous animals. By authority: J. Ferres, government printer, Melbourne.
Melville J, Haines ML, Boysen K, Hodkinson L, Kilian A, Smith Date KL et al. (2017) Identifying hybridization and admixture using SNPs: application of the DArTseq platform in phylogeographic research on vertebrates. R Soc Open Sci 4:161061. https://doi.org/10.1098/rsos.161061
Google Scholar
Mussmann SM, Douglas MR, Chafin TK, Douglas ME (2019) BA3-SNPs: Contemporary migration reconfigured in BayesAss for next-generation sequence data. Methods Ecol Evol 10:1808–1813. https://doi.org/10.1111/2041-210x.13252
Google Scholar
Near TJ, MacGuigan DJ, Parker E, Struthers CD, Jones CD, Dornburg A (2018) Phylogenetic analysis of Antarctic notothenioids illuminates the utility of RADseq for resolving Cenozoic adaptive radiations. Mol Phylogenet Evol 129:268–279. https://doi.org/10.1016/j.ympev.2018.09.001
Google Scholar
Ogle CC (1981) Great Barrier Island wildlife survey. TANE 27:177–200
Parkes J (2006) Feasibility plan to eradicate Common Mynas (Acridotheres tristis) from Mangaia Island, Cook Islands. Lincoln. Accessed 19 January 2022
Peacock DS, van Rensburg BJ, Robertson MP (2007) The distribution and spread of the invasive alien common myna, Acridotheres tristis L. (Aves: Sturnidae), in southern Africa. S Afr J Sci 103:465–473. 10520/ejc96625
Pearman WS, Urban L, Alexander A (2022) Commonly used Hardy–Weinberg equilibrium filtering schemes impact population structure inferences using RADseq data. Mol Ecol Resour 22:2599–2613. https://doi.org/10.1111/1755-0998.13646
Google Scholar
Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLOS ONE 7:e37135. https://doi.org/10.1371/journal.pone.0037135
Google Scholar
Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in the United States. Bioscience 50:53–65. https://doi.org/10.1641/0006-3568(2000)050[0053:eaecon]2.3.co;2
Google Scholar
Prentis PJ, Wilson JRU, Dormontt EE, Richardson DM, Lowe AJ (2008) Adaptive evolution in invasive species. Trends Plant Sci 13:288–294. https://doi.org/10.1016/j.tplants.2008.03.004
Google Scholar
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. https://doi.org/10.1093/genetics/155.2.945
Google Scholar
Privé F, Luu K, Blum MGB, McGrath JJ, Vilhjálmsson BJ (2020) Efficient toolkit implementing best practices for principal component analysis of population genetic data. Bioinformatics 36:4449–4457. https://doi.org/10.1093/bioinformatics/btaa520
Google Scholar
Puechmaille SJ (2016) The program structure does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Mol Ecol Resour 16:608–627. https://doi.org/10.1111/1755-0998.12512
Google Scholar
Pyšek P, Richardson DM (2010) Invasive Species, Environmental Change and Management, and Health. Annu Rev Environ Resour 35:25–55. https://doi.org/10.1146/annurev-environ-033009-095548
Google Scholar
R Core Team (2021) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/
Robertson CJR, HP, FMJ, PCR (2007) Atlas of bird distribution in New Zealand 1999-2004. The Ornithological Society of New Zealand, Wellington.
Rollins LA, Woolnough AP, Sherwin WB (2006) Population genetic tools for pest management: a review. Wildl Res 33:251–261. https://doi.org/10.1071/wr05106
Google Scholar
Rollins LA, Woolnough AP, Wilton AN, Sinclair R, Sherwin WB (2009) Invasive species can’t cover their tracks: using microsatellites to assist management of starling (Sturnus vulgaris) populations in Western Australia. Mol Ecol 18:1560–1573. https://doi.org/10.1111/j.1365-294x.2009.04132.x
Google Scholar
Rousset F (1997) Genetic differentiation and estimation of gene flow from F-Statistics under isolation by distance. Genetics 145:1219–1228. https://doi.org/10.1093/genetics/145.4.1219
Google Scholar
Saavedra S (2009) First control for Common myna (Acridotheres tristis) on Ascension island 2009. Canary Island. Accessed 19 January 2022
Safford R, Hawkins F (2013) The birds of Africa: Volume VIII: The Malagasy Region: Madagascar, Seychelles, Comoros, Mascarenes. Bloomsbury Publishing, London.
Shafer ABA, Peart CR, Tusso S, Maayan I, Brelsford A, Wheat CW et al. (2017) Bioinformatic processing of RAD-seq data dramatically impacts downstream population genetic inference. Methods Ecol Evol 8:907–917. https://doi.org/10.1111/2041-210x.12700
Google Scholar
Simberloff D, Martin J-L, Genovesi P, Maris V, Wardle DA, Aronson J et al. (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66. https://doi.org/10.1016/j.tree.2012.07.013
Google Scholar
Stuart KC, Cardilini APA, Cassey P, Richardson MF, Sherwin WB, Rollins LA et al. (2021) Signatures of selection in a recent invasion reveal adaptive divergence in a highly vagile invasive species. Mol Ecol 30:1419–1434. https://doi.org/10.1111/mec.15601
Google Scholar
Thomson GM (1922) The naturalisation of animals and plants in New Zealand. Cambridge University Press, New Zealand
Te Uru Rākau (2020) The one billion trees programme: our future, our billion trees. Te Uru Rākau, Wellington, New Zealand. Accessed 5 April 2023
Turbelin AJ, Malamud BD, Francis RA (2017) Mapping the global state of invasive alien species: patterns of invasion and policy responses. Glob Ecol Biogeogr 26:78–92. https://doi.org/10.1111/geb.12517
Google Scholar
Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag New York.
Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191. https://doi.org/10.1093/genetics/163.3.1177
Google Scholar
Wright B, Farquharson KA, McLennan EA, Belov K, Hogg CJ, Grueber CE (2019) From reference genomes to population genomics: comparing three reference-aligned reduced-representation sequencing pipelines in two wildlife species. BMC Genom 20:453. https://doi.org/10.1186/s12864-019-5806-y
Google Scholar
Yap CA-M, Sodhi NS, Brook BW (2002) Roost characteristics of invasive mynas in Singapore. J Wildl Manag 66:1118. https://doi.org/10.2307/3802943
Google Scholar
Zenni RD, Essl F, García-Berthou E, McDermott SM (2021) The economic costs of biological invasions around the world. NeoBiota 67:1–9. https://doi.org/10.3897/neobiota.67.69971
Google Scholar
Zhang C, Dong SS, Xu JY, He WM, Yang TL (2019) PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35:1786–1788. https://doi.org/10.1093/bioinformatics/bty875
Google Scholar