Ganser, L. R., Kelly, M. L., Herschlag, D. & Al-Hashimi, H. M. The roles of structural dynamics in the cellular functions of RNAs. Nat. Rev. Mol. Cell Biol. 20, 474–489 (2019).
Google Scholar
Fischer, M., Coleman, R. G., Fraser, J. S. & Shoichet, B. K. Incorporation of protein flexibility and conformational energy penalties in docking screens to improve ligand discovery. Nat. Chem. 6, 575–583 (2014).
Google Scholar
Parvin, J. D., Mc Cormick, R. J., Sharp, P. A. & Fisher, D. E. Pre-bending of a promoter sequence enhances affinity for the TATA-binding factor. Nature 373, 724–727 (1995).
Google Scholar
Denny, S. K. et al. High-throughput investigation of diverse junction elements in RNA tertiary folding. Cell 174, 377–390.e20 (2018).
Google Scholar
Afek, A. et al. DNA mismatches reveal conformational penalties in protein–DNA recognition. Nature 587, 291–296 (2020).
Google Scholar
Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).
Google Scholar
Orlovsky, N. I., Al-Hashimi, H. M. & Oas, T. G. Exposing hidden high-affinity RNA conformational states. J. Am. Chem. Soc. 142, 907–921 (2020).
Google Scholar
Alderson, T. R. & Kay, L. E. NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function. Cell 184, 577–595 (2021).
Google Scholar
Guo, J. U. & Bartel, D. P. RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science 353, aaf5371 (2016).
Google Scholar
Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. & Weissman, J. S. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505, 701–705 (2014).
Google Scholar
Shi, H. et al. Rapid and accurate determination of atomistic RNA dynamic ensemble models using NMR and structure prediction. Nat. Commun. 11, 5531 (2020).
Google Scholar
Tomezsko, P., Swaminathan, H. & Rouskin, S. Viral RNA structure analysis using DMS-MaPseq. Methods 183, 68–75 (2020).
Google Scholar
Schulze-Gahmen, U. & Hurley, J. H. Structural mechanism for HIV-1 TAR loop recognition by Tat and the super elongation complex. Proc. Natl Acad. Sci. USA 115, 12973–12978 (2018).
Google Scholar
D’Orso, I. et al. Transition step during assembly of HIV Tat:P-TEFb transcription complexes and transfer to TAR RNA. Mol. Cell. Biol. 32, 4780 (2012).
Google Scholar
Liu, Y., Suñé, C. & Garcia-Blanco, M. A. Human immunodeficiency virus type 1 Tat-dependent activation of an arrested RNA polymerase II elongation complex. Virology 255, 337–346 (1999).
Google Scholar
Marciniak, R. A., Calnan, B. J., Frankel, A. D. & Sharp, P. A. HIV-1 Tat protein trans-activates transcription in vitro. Cell 63, 791–802 (1990).
Google Scholar
Karn, J., Stoltzfus, C. M., Bushman, F. D., Nabel, G. J. & Swanstrom, R. Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Cold Spring Harbor Perspect. Med. 2, a006916 (2012).
Google Scholar
Merriman, D. K. et al. Increasing the length of poly-pyrimidine bulges broadens RNA conformational ensembles with minimal impact on stacking energetics. RNA 24, 1363–1376 (2018).
Google Scholar
Puglisi, J. D., Chen, L., Frankel, A. D. & Williamson, J. R. Role of RNA structure in arginine recognition of TAR RNA. Proc. Natl Acad. Sci. USA 90, 3680–3684 (1993).
Google Scholar
Puglisi, J. D., Tan, R., Calnan, B. J., Frankel, A. D. & Williamson, J. R. Conformation of the TAR RNA–arginine complex by NMR spectroscopy. Science 257, 76–80 (1992).
Google Scholar
Tao, J., Chen, L. & Frankel, A. D. Dissection of the proposed base triple in human immunodeficiency virus TAR RNA indicates the importance of the Hoogsteen interaction. Biochemistry 36, 3491–3495 (1997).
Google Scholar
Pham, V. V. et al. HIV-1 Tat interactions with cellular 7SK and viral TAR RNAs identifies dual structural mimicry. Nat. Commun. 9, 4266 (2018).
Google Scholar
Brodsky, A. S. & Williamson, J. R. Solution structure of the HIV-2 TAR-argininamide complex. J. Mol. Biol. 267, 624–639 (1997).
Google Scholar
Calnan, B. J., Tidor, B., Biancalana, S., Hudson, D. & Frankel, A. D. Arginine-mediated RNA recognition: the arginine fork. Science 252, 1167–1171 (1991).
Google Scholar
Chavali, S. S., Bonn-Breach, R. & Wedekind, J. E. Face-time with TAR: portraits of an HIV-1 RNA with diverse modes of effector recognition relevant for drug discovery. J. Biol. Chem. 294, 9326–9341 (2019).
Google Scholar
Chavali, S. S., Cavender, C. E., Mathews, D. H. & Wedekind, J. E. Arginine forks are a widespread motif to recognize phosphate backbones and guanine nucleobases in the RNA major groove. J. Am. Chem. Soc. 142, 19835–19839 (2020).
Google Scholar
Mustoe, A. M., Al-Hashimi, H. M. & Brooks, C. L. Coarse grained models reveal essential contributions of topological constraints to the conformational free energy of RNA bulges. J. Phys. Chem. B 118, 40 (2014).
Google Scholar
Karn, J., Dingwall, C., Finch, J. T., Heaphy, S. & Gait, M. J. RNA binding by the tat and rev proteins of HIV-1. Biochimie 73, 9–16 (1991).
Google Scholar
Barthel, A. & Zacharias, M. Conformational transitions in RNA single uridine and adenosine bulge structures: a molecular dynamics free energy simulation study. Biophys. J. 90, 2450–2462 (2006).
Google Scholar
Qi, Y. et al. Continuous interdomain orientation distributions reveal components of binding thermodynamics. J. Mol. Biol. 430, 3412–3426 (2018).
Google Scholar
Watkins, A. M., Rangan, R. & Das, R. FARFAR2: improved de novo Rosetta prediction of complex global RNA folds. Structure 28, 963–976.e6 (2020).
Google Scholar
Matsumoto, C., Hamasaki, K., Mihara, H. & Ueno, A. A high-throughput screening utilization intramolecular fluorescence resonance energy transfer for the discovery of the molecules that bind HIV-1 TAR RNA specifically. Bioorganic Med. Chem. Lett. 10, 1857–1861 (2000).
Google Scholar
Ganser, L. R. et al. Probing RNA conformational equilibria within the functional cellular context. Cell Rep. 30, 2472–2480.e4 (2020).
Google Scholar
Taliaferro, J. M. et al. RNA sequence context effects measured in vitro predict in vivo protein binding and regulation. Mol. Cell 64, 294–306 (2016).
Google Scholar
Delaglio, F. et al. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).
Google Scholar
Goddard, T. D. & Kneller, D. G. Sparky—NMR Assignment and Integration Software (Univ. California, San Francisco, 2006).
Casiano-Negroni, A., Sun, X. & Al-Hashimi, H. M. Probing Na+-induced changes in the HIV-1 TAR conformational dynamics using NMR residual dipolar couplings: New insights into the role of counterions and electrostatic interactions in adaptive recognition. Biochemistry 46, 6525–6535 (2007).
Google Scholar
Jarmoskaite, I., AlSadhan, I., Vaidyanathan, P. P. & Herschlag, D. How to measure and evaluate binding affinities. eLife 9, e57254 (2020).
Google Scholar
Tiley, L. S., Madore, S. J., Malim, M. H. & Cullen, B. R. The VP16 transcription activation domain is functional when targeted to a promoter-proximal RNA sequence. Genes Dev. 6, 2077–2087 (1992).
Google Scholar
Schulze-Gahmen, U. et al. The AFF4 scaffold binds human P-TEFb adjacent to HIV Tat. eLife 2, e00327 (2013).
Google Scholar
Shojania, S. & O’Neil, J. D. HIV-1 Tat is a natively unfolded protein: the solution conformation and dynamics of reduced HIV-1 Tat-(1–72) by NMR spectroscopy. J. Biol. Chem. 281, 8347–8356 (2006).
Google Scholar
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671 (2012).
Google Scholar
Lu, X. J., Bussemaker, H. J. & Olson, W. K. DSSR: an integrated software tool for dissecting the spatial structure of RNA. Nucleic Acids Res. 43, e142 (2015).
Google Scholar
Sathyamoorthy, B., Lee, J., Kimsey, I., Ganser, L. R. & Al-Hashimi, H. Development and application of aromatic [13C, 1H] SOFAST-HMQC NMR experiment for nucleic acids. J. Biomol. NMR 60, 77–83 (2014).
Google Scholar