Boomsma, D., Busjahn, A. & Peltonen, L. Classical twin studies and beyond. Nat. Rev. Genet. 3, 872–882 (2002).
Google Scholar
Craig, J. M., Calais-Ferreira, L., Umstad, M. P. & Buchwald, D. The value of twins for health and medical research: a third of a century of progress. Twin Res. Hum. Genet. 23, 8–15 (2020).
Google Scholar
Falconer, D. S. & Mackay, T. F. Introduction to Quantitative Genetics (Prentice Hall, 1996).
McGue, M. When assessing twin concordance, use the probandwise not the pairwise rate. Schizophr. Bull. 18, 171–176 (1992).
Google Scholar
Visscher, P. M. & Wray, N. R. Concepts and misconceptions about the polygenic additive model applied to disease. Hum. Hered. 80, 165–170 (2015).
Google Scholar
Falconer, D. S. The inheritance of liability to certain diseases, estimated from the incidence among relatives. Ann. Hum. Genet 29, 51–76 (1965).
Google Scholar
Smith, C. Heritability of liability and concordance in monozygous twins. Ann. Hum. Genet. 34, 85–91 (1970).
Google Scholar
Owen, M. J., Sawa, A. & Mortensen, P. B. Schizophrenia. Lancet 388, 86–97 (2016).
Google Scholar
Marion, M. C. et al. Nucleic acid-sensing and interferon-inducible pathways show differential methylation in MZ twins discordant for lupus and overexpression in independent lupus samples: implications for pathogenic mechanism and drug targeting. Genes 12, 1898 (2021).
Google Scholar
Castellani, C. A. et al. DNA methylation differences in monozygotic twin pairs discordant for schizophrenia identifies psychosis related genes and networks. BMC Med. Genomics 8, 17 (2015).
Google Scholar
Konki, M. et al. Peripheral blood DNA methylation differences in twin pairs discordant for Alzheimer’s disease. Clin. Epigenet. 11, 130 (2019).
Google Scholar
Kazuno, A. et al. Proteomic analysis of lymphoblastoid cells derived from monozygotic twins discordant for bipolar disorder: a preliminary study. PLoS ONE 8, e53855 (2013).
Google Scholar
O’Hanlon, T. P. et al. Plasma proteomic profiles from disease-discordant monozygotic twins suggest that molecular pathways are shared in multiple systemic autoimmune diseases. Arthritis Res. Ther. 13, R181 (2011).
Google Scholar
Muniandy, M. et al. Plasma metabolites reveal distinct profiles associating with different metabolic risk factors in monozygotic twin pairs. Int J. Obes. 43, 487–502 (2019).
Google Scholar
Tsang, T. M., Huang, J. T.-J., Holmes, E. & Bahn, S. Metabolic profiling of plasma from discordant schizophrenia twins: correlation between lipid signals and global functioning in female schizophrenia patients. J. Proteome Res. 5, 756–760 (2006).
Google Scholar
Bondia‐Pons, I. et al. Metabolome and fecal microbiota in monozygotic twin pairs discordant for weight: a Big Mac challenge. FASEB J. 28, 4169–4179 (2014).
Google Scholar
Zhu, Y. et al. Genome-wide profiling of DNA methylome and transcriptome in peripheral blood monocytes for major depression: a monozygotic discordant twin study. Transl. Psychiatry 9, 215 (2019).
Google Scholar
Vitaro, F., Brendgen, M. & Arseneault, L. The discordant MZ-twin method: one step closer to the holy grail of causality. Int. J. Behav. Dev. 33, 376–382 (2009).
Google Scholar
Vink, J. M. et al. Differential gene expression patterns between smokers and non-smokers: cause or consequence? Addict. Biol. 22, 550–560 (2017).
Google Scholar
Goldman, S. M. et al. Concordance for Parkinson’s disease in twins: a 20‐year update. Ann. Neurol. 85, 600–605 (2019).
Google Scholar
Tanner, C. M. et al. Parkinson disease in twins: an etiologic study. JAMA 281, 341–346 (1999).
Google Scholar
Plomin, R., DeFries, J. C., Knopik, V. S. & Neiderhiser, J. M. Behavioral Genetics (Worth, 2012).
Willoughby, E. A., Polderman, T. J. C. & Boutwell, B. B. Behavioural genetics methods. Nat. Rev. Methods Prim. 3, 11 (2023).
Google Scholar
Christensen, K. & McGue, M. in Twin Research for Everyone (eds Tarnoki, A. et al.) 439–456 (Academic Press, 2022).
Willemsen, G., Odintsova, V., de Geus, E. & Boomsma, D. I. in Twin and Higher-Order Pregnancies (eds Khalil, A. et al.) 51–71 (Springer International, 2021).
de Geus, E. J. C., Posthuma, D., IJzerman, R. G. & Boomsma, D. I. Comparing blood pressure of twins and their singleton siblings: being a twin does not affect adult blood pressure. Twin Res. 4, 385–391 (2001).
Google Scholar
Christensen, K. et al. Comparison of academic performance of twins and singletons in adolescence: follow-up study. Br. Med. J. 333, 1095 (2006).
Google Scholar
Barnes, J. C. & Boutwell, B. B. A demonstration of the generalizability of twin-based research on antisocial behavior. Behav. Genet. 43, 120–131 (2013).
Google Scholar
Johnson, W., Krueger, R. F., Bouchard, T. J. & McGue, M. The personalities of twins: just ordinary folks. Twin Res. Hum. Genet. 5, 125–131 (2002).
Google Scholar
Kendler, K. S., Ohlsson, H., Lichtenstein, P., Sundquist, J. & Sundquist, K. The genetic epidemiology of treated major depression in Sweden. Am. J. Psychiatry 175, 1137–1144 (2018).
Google Scholar
Johnson, B. N. et al. Male microchimerism in females: a quantitative study of twin pedigrees to investigate mechanisms. Hum. Reprod. 36, 2529–2537 (2021).
Google Scholar
Mook-Kanamori, D. O. et al. Heritability estimates of body size in fetal life and early childhood. PLoS ONE 7, e39901 (2012).
Google Scholar
Silventoinen, K., Magnusson, P. K. E., Tynelius, P., Kaprio, J. & Rasmussen, F. Heritability of body size and muscle strength in young adulthood: a study of one million Swedish men. Genet. Epidemiol. 32, 341–349 (2008).
Google Scholar
Estourgie-van Burk, G. F., Bartels, M., Boomsma, D. I. & Delemarre-van de Waal, H. A. Body size of twins compared with siblings and the general population: from birth to late adolescence. J. Pediatr. 156, 586–591 (2010).
Google Scholar
Beck, J. J. et al. Genetic meta-analysis of twin birth weight shows high genetic correlation with singleton birth weight. Hum. Mol. Genet. 30, 1894–1905 (2021).
Google Scholar
Lykken, D. T. Research with twins: the concept of emergenesis. Psychophysiology 19, 361–372 (1982).
Google Scholar
Jonsson, H. et al. Differences between germline genomes of monozygotic twins. Nat. Genet. 53, 27–34 (2021).
Google Scholar
Kong, A. et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488, 471–475 (2012).
Google Scholar
Veltman, J. A. & Brunner, H. G. De novo mutations in human genetic disease. Nat. Rev. Genet. 13, 565–575 (2012).
Google Scholar
Francioli, L. C. et al. Genome-wide patterns and properties of de novo mutations in humans. Nat. Genet. 47, 822–826 (2015).
Google Scholar
Dolan, C. V., Huijskens, R. C. A., Minică, C. C., Neale, M. C. & Boomsma, D. I. Incorporating polygenic risk scores in the ACE twin model to estimate A–C covariance. Behav. Genet. 51, 237–249 (2021).
Google Scholar
Dolan, C. V., de Kort, J. M., van Beijsterveldt, T. C. E. M., Bartels, M. & Boomsma, D. I. GE covariance through phenotype to environment transmission: an assessment in longitudinal twin data and application to childhood anxiety. Behav. Genet. 44, 240–253 (2014).
Google Scholar
Wang, B. et al. Robust genetic nurture effects on education: a systematic review and meta-analysis based on 38,654 families across 8 cohorts. Am. J. Hum. Genet. 108, 1780–1791 (2021).
Google Scholar
D’Onofrio, B. M. et al. The role of the children of twins design in elucidating causal relations between parent characteristics and child outcomes. J. Child Psychol. Psychiatry 44, 1130–1144 (2003).
Google Scholar
McAdams, T. A. et al. Revisiting the children-of-twins design: improving existing models for the exploration of intergenerational associations. Behav. Genet. 48, 397–412 (2018).
Google Scholar
McAdams, T. A. et al. Accounting for genetic and environmental confounds in associations between parent and child characteristics: a systematic review of children-of-twins studies. Psychol. Bull. 140, 1138–1173 (2014).
Google Scholar
Balbona, J. V., Kim, Y. & Keller, M. C. Estimation of parental effects using polygenic scores. Behav. Genet. 51, 264–278 (2021).
Google Scholar
Balbona, J. V., Kim, Y. & Keller, M. C. The estimation of environmental and genetic parental influences. Dev. Psychopathol. 34, 1876–1886 (2022).
Google Scholar
Conley, D. et al. Is the effect of parental education on offspring biased or moderated by genotype? Sociol. Sci. 2, 82–105 (2015).
Google Scholar
Hart, S. A., Little, C. & van Bergen, E. Nurture might be nature: cautionary tales and proposed solutions. NPJ Sci. Learn. 6, 2 (2021).
Google Scholar
Willoughby, E. A., McGue, M., Iacono, W. G., Rustichini, A. & Lee, J. J. The role of parental genotype in predicting offspring years of education: evidence for genetic nurture. Mol. Psychiatry 26, 3896–3904 (2021).
Google Scholar
de Vries, L. P. et al. Gene-by-crisis interaction for optimism and meaning in life: the effects of the COVID-19 pandemic. Behav. Genet. 52, 13–25 (2022).
Google Scholar
Purcell, S. Variance components models for gene–environment interaction in twin analysis. Twin Res. 5, 554–571 (2002).
Google Scholar
van der Sluis, S., Posthuma, D. & Dolan, C. V. A note on false positives and power in G × E modelling of twin data. Behav. Genet. 42, 170–186 (2012).
Google Scholar
Molenaar, D., van der Sluis, S., Boomsma, D. I. & Dolan, C. V. Detecting specific genotype by environment interactions using marginal maximum likelihood estimation in the classical twin design. Behav. Genet 42, 483–499 (2012).
Google Scholar
Jinks, J. L. & Fulker, D. W. Comparison of the biometrical genetical, MAVA, and classical approaches to the analysis of human behavior. Psychol. Bull. 73, 311–349 (1970).
Google Scholar
van der Sluis, S., Dolan, C. V., Neale, M. C., Boomsma, D. I. & Posthuma, D. Detecting genotype–environment interaction in monozygotic twin data: comparing the Jinks and Fulker test and a new test based on marginal maximum likelihood estimation. Twin Res. Hum. Genet. 9, 377–392 (2006).
Google Scholar
Plomin, R., DeFries, J. C. & Loehlin, J. C. Genotype–environment interaction and correlation in the analysis of human behavior. Psychol. Bull. 84, 309–322 (1977).
Google Scholar
Eaves, L. A model for sibling effects in man. Heredity 36, 205–214 (1976).
Google Scholar
Hunter, M. D. Multilevel modeling in classical twin and modern molecular behavior genetics. Behav. Genet. 51, 301–318 (2021).
Google Scholar
Tamimy, Z. et al. Multilevel twin models: geographical region as a third level variable. Behav. Genet. 51, 319–330 (2021).
Google Scholar
Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 23, R89–R98 (2014).
Google Scholar
Heath, A. C. et al. Testing hypotheses about direction of causation using cross-sectional family data. Behav. Genet. 23, 29–50 (1993).
Google Scholar
Castro-de-Araujo, L. F. S. et al. MR-DoC2: bidirectional causal modeling with instrumental variables and data from relatives. Behav. Genet. 53, 63–73 (2022).
Google Scholar
Minică, C. C., Dolan, C. V., Boomsma, D. I., de Geus, E. & Neale, M. C. Extending causality tests with genetic instruments: an integration of Mendelian randomization with the classical twin design. Behav. Genet. 48, 337–349 (2018).
Google Scholar
Evans, L. M. et al. Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits. Nat. Genet. 50, 737–745 (2018).
Google Scholar
Zaitlen, N. et al. Using extended genealogy to estimate components of heritability for 23 quantitative and dichotomous traits. PLoS Genet. 9, e1003520 (2013).
Google Scholar
Ouwens, K. G. et al. A characterization of cis– and trans-heritability of RNA-seq-based gene expression. Eur. J. Hum. Genet. 28, 253–263 (2020).
Google Scholar
Hagenbeek, F. A. et al. Heritability estimates for 361 blood metabolites across 40 genome-wide association studies. Nat. Commun. 11, 39 (2020).
Google Scholar
Hall, J. G. Twinning. Lancet 362, 735–743 (2003).
Google Scholar
Bulmer, M. G. The Biology of Twinning in Man (Clarendon, 1970).
Lewis, C. M., Healey, S. C. & Martin, N. G. Genetic contribution to DZ twinning. Am. J. Med. Genet. 61, 237–246 (1996).
Google Scholar
Meulemans, W. J. et al. Genetic modelling of dizygotic twinning in pedigrees of spontaneous dizygotic twins. Am. J. Med. Genet. 61, 258–263 (1996).
Google Scholar
Duffy, D. L. & Martin, N. G. The heritability of twinning in seven large historic pedigrees. Twin Res. Hum. Genet. 25, 63–66 (2022).
Google Scholar
Mbarek, H. et al. Identification of common genetic variants influencing spontaneous dizygotic twinning and female fertility. Am. J. Hum. Genet. 98, 898–908 (2016).
Google Scholar
van Dongen, J. et al. Identical twins carry a persistent epigenetic signature of early genome programming. Nat. Commun. 12, 5618 (2021).
Google Scholar
Levi, S. Ultrasonic assessment of the high rate of human multiple pregnancy in the first trimester. J. Clin. Ultrasound 4, 3–5 (1976).
Google Scholar
Hall, J. G. The mystery of monozygotic twinning I: what can amyoplasia tell us about monozygotic twinning and the possible role of twin–twin transfusion? Am. J. Med. Genet. A 185, 1816–1821 (2021).
Google Scholar
Eaves, L. J. & Eysenck, H. J. Genetics and the development of social attitudes. Nature 249, 288–289 (1974).
Google Scholar
Taubman, P. Earnings, education, genetics, and environment. J. Hum. Resour. 11, 447–461 (1976).
Google Scholar
Cesarini, D. et al. Heritability of cooperative behavior in the trust game. Proc. Natl Acad. Sci. USA 105, 3721–3726 (2008).
Google Scholar
Hatemi, P. K. et al. Genetic influences on political ideologies: twin analyses of 19 measures of political ideologies from five democracies and genome-wide findings from three populations. Behav. Genet. 44, 282–294 (2014).
Google Scholar
Williams, F. M. K. et al. Self-reported symptoms of COVID-19, including symptoms most predictive of SARS-CoV-2 infection, are heritable. Twin Res. Hum. Genet. 23, 316–321 (2020).
Google Scholar
Baird, P. N. & Hysi, P. Twin registries moving forward and meeting the future: a review. Twin Res. Hum. Genet. 22, 201–209 (2019).
Google Scholar
Geserick, M. et al. Acceleration of BMI in early childhood and risk of sustained obesity. N. Engl. J. Med. 379, 1303–1312 (2018).
Google Scholar
Elks, C. et al. Variability in the heritability of body mass index: a systematic review and meta-regression. Front. Endocrinol. 3, 29 (2012).
Google Scholar
Huston, A. C. From research to policy and back. Child Dev. 79, 1–12 (2008).
Google Scholar
Bird, S., Segall, I. & Lopatka, M. Replication: why we still can’t browse in peace—on the uniqueness and reidentifiability of web browsing histories. in Sixteenth Symposium on Usable Privacy and Security (SOUPS 2020), 489–503 (USENIX Association, 2020).
Olejnik, L., Castelluccia, C. & Janc, A. Why Johnny can’t browse in peace: on the uniqueness of web browsing history patterns. In 5th Workshop on Hot Topics in Privacy Enhancing Technologies (HotPETs 2012), hal-00747841 (2012).
Eichstaedt, J. C. et al. Facebook language predicts depression in medical records. Proc. Natl Acad. Sci. USA 115, 11203–11208 (2018).
Google Scholar
Long, E. C. et al. The genetic and environmental contributions to internet use and associations with psychopathology: a twin study. Twin Res. Hum. Genet 19, 1–9 (2016).
Google Scholar
Langner, I., Garbe, E., Banaschewski, T. & Mikolajczyk, R. T. Twin and sibling studies using health insurance data: the example of attention deficit/hyperactivity disorder (ADHD). PLoS ONE 8, e62177 (2013).
Google Scholar
Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).
Google Scholar
Borsboom, D. & Cramer, A. O. J. Network analysis: an integrative approach to the structure of psychopathology. Annu. Rev. Clin. Psychol. 9, 91–121 (2013).
Google Scholar
Koenis, M. M. G. et al. Association between structural brain network efficiency and intelligence increases during adolescence. Hum. Brain Mapp. 39, 822–836 (2018).
Google Scholar
Koenis, M. M. G. et al. Development of the brain’s structural network efficiency in early adolescence: a longitudinal DTI twin study. Hum. Brain Mapp. 36, 4938–4953 (2015).
Google Scholar
Bohlken, M. M. et al. Structural brain connectivity as a genetic marker for schizophrenia. JAMA Psychiatry 73, 11–19 (2016).
Google Scholar
Olatunji, B. O., Christian, C., Strachan, E. & Levinson, C. A. Central and peripheral symptoms in network analysis are differentially heritable: a twin study of anxious misery. J. Affect. Disord. 274, 986–994 (2020).
Google Scholar
Forbes, M. K., Wright, A. G. C., Markon, K. E. & Krueger, R. F. Quantifying the reliability and replicability of psychopathology network characteristics. Multivar. Behav. Res. 56, 224–242 (2021).
Google Scholar
Fried, E. I. & Cramer, A. O. J. Moving forward: challenges and directions for psychopathological network theory and methodology. Perspect. Psychol. Sci. 12, 999–1020 (2017).
Google Scholar
Zhang, H. The review of transcriptome sequencing: principles, history and advances. IOP Conf. Ser. Earth Environ. Sci. 332, 042003 (2019).
Google Scholar
Grundberg, E. et al. Mapping cis– and trans-regulatory effects across multiple tissues in twins. Nat. Genet. 44, 1084–1089 (2012).
Google Scholar
Wright, F. A. et al. Heritability and genomics of gene expression in peripheral blood. Nat. Genet. 46, 430–437 (2014).
Google Scholar
Aristizabal, M. J. et al. Biological embedding of experience: a primer on epigenetics. Proc. Natl Acad. Sci. USA 117, 23261–23269 (2020).
Google Scholar
van Dongen, J. et al. Genetic and environmental influences interact with age and sex in shaping the human methylome. Nat. Commun. 7, 11115 (2016).
Google Scholar
Li, S. et al. Early life affects late-life health through determining DNA methylation across the lifespan: a twin study. eBioMedicine 77, 103927 (2022).
Google Scholar
Liu, Y. et al. Quantitative variability of 342 plasma proteins in a human twin population. Mol. Syst. Biol. 11, 786 (2015).
Google Scholar
Menni, C. et al. Glycosylation of immunoglobulin G: role of genetic and epigenetic influences. PLoS ONE 8, e82558 (2013).
Google Scholar
Zaytseva, O. O. et al. Heritability of human plasma N-glycome. J. Proteome Res. 19, 85–91 (2020).
Google Scholar
Yang, Q. et al. Metabolomics biotechnology, applications, and future trends: a systematic review. RSC Adv. 9, 37245–37257 (2019).
Google Scholar
Pool, R. et al. Genetics and not shared environment explains familial resemblance in adult metabolomics data. Twin Res. Hum. Genet. 23, 145–155 (2020).
Google Scholar
Shin, S.-Y. et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 46, 543–550 (2014).
Google Scholar
Bermingham, K. M. et al. Genetic and environmental contributions to variation in the stable urinary NMR metabolome over time: a classic twin study. J. Proteome Res. 20, 3992–4000 (2021).
Google Scholar
Hagenbeek, F. A. et al. Heritability of urinary amines, organic acids, and steroid hormones in children. Metabolites 12, 474 (2022).
Google Scholar
Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol. 18, 83 (2017).
Google Scholar
Duruflé, H. et al. A powerful framework for an integrative study with heterogeneous omics data: from univariate statistics to multi-block analysis. Brief. Bioinform. 22, bbaa166 (2021).
Google Scholar
Hur, Y.-M., Odintsova, V. V., Ordoñana, J. R., Silventoinen, K. & Willemsen, G. in Twin Research for Everyone (eds Tarnoki, A. et al.) 23–50 (Academic Press, 2022).
Silventoinen, K. et al. The CODATwins Project: the current status and recent findings of COllaborative Project of Development of Anthropometrical Measures in Twins. Twin Res. Hum. Genet. 22, 800–808 (2019).
Google Scholar
Odintsova, V. V. et al. Establishing a twin register: an invaluable resource for (behavior) genetic, epidemiological, biomarker, and ‘omics’ studies. Twin Res. Hum. Genet. 21, 239–252 (2018).
Google Scholar
Boutwell, B. B., Narvey, C. S., Helton, J. J. & Piquero, A. R. Why twin studies are important for health span science research: the case of maltreatment of aging adults. BMC Geriatr. 22, 943 (2022).
Google Scholar
Austerberry, C., Mateen, M., Fearon, P. & Ronald, A. Heritability of psychological traits and developmental milestones in infancy: a systematic review and meta-analysis. JAMA Netw. Open 5, e2227887 (2022).
Google Scholar
Polderman, T. J. C. et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat. Genet. 47, 702–709 (2015).
Google Scholar
Hur, Y.-M. et al. A comparison of twin birthweight data from Australia, the Netherlands, the United States, Japan, and South Korea: are genetic and environmental variations in birthweight similar in Caucasians and East Asians? Twin Res. Hum. Genet. 8, 638–648 (2005).
Google Scholar
Laursen, M. et al. Genetic influence on prolonged gestation: a population-based Danish twin study. Am. J. Obstet. Gynecol. 190, 489–494 (2004).
Google Scholar
Garrett-Bakelman, F. E. et al. The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight. Science 364, eaau8650 (2019).
Google Scholar
Vinkhuyzen, A. A. E., Van Der Sluis, S., De Geus, E. J. C., Boomsma, D. I. & Posthuma, D. Genetic influences on ‘environmental’ factors. Genes Brain Behav. 9, 276–287 (2010).
Google Scholar
Friedman, N. P., Banich, M. T. & Keller, M. C. Twin studies to GWAS: there and back again. Trends Cogn. Sci. 25, 855–869 (2021).
Google Scholar
Hatemi, P. K. The intersection of behavioral genetics and political science: introduction to the special issue. Twin Res. Hum. Genet. 15, 1–5 (2012).
Google Scholar
Cesarini, D. & Visscher, P. M. Genetics and educational attainment. NPJ Sci. Learn. 2, 4 (2017).
Google Scholar
Plomin, R. The next 10 years of behavioural genomic research. JCPP Adv. 2, e12112 (2022).