Woodhead, J. et al. Kimberlites reveal 2.5-billion-year evolution of a deep, isolated mantle reservoir. Nature 573, 578–581. (2019).
Google Scholar
Shirey, S. B. & Richardson, S. H. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333, 434–436. (2011).
Google Scholar
Tappe, S., Smart, K., Torsvik, T., Massuyeau, M. & de Wit, M. Geodynamics of kimberlites on a cooling Earth: Clues to plate tectonic evolution and deep volatile cycles. Earth Planet. Sci. Lett. 484, 1–14. (2018).
Google Scholar
Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J. & Ashwal, L. D. Diamonds sampled by plumes from the core-mantle boundary. Nature 466, 352–355. (2010).
Google Scholar
Tappe, S., Graham Pearson, D., Kjarsgaard, B. A., Nowell, G. & Dowall, D. Mantle transition zone input to kimberlite magmatism near a subduction zone: origin of anomalous Nd-Hf isotope systematics at Lac de Gras, Canada. Earth Planet. Sci. Lett. 371–372, 235–251. (2013).
Google Scholar
Faccenna, C. et al. Subduction-triggered magmatic pulses: a new class of plumes?. Earth Planet. Sci. Lett. 299, 54–68. (2010).
Google Scholar
Cao, X., Flament, N., Bodur, Ö. F. & Müller, R. D. The evolution of basal mantle structure in response to supercontinent aggregation and dispersal. Sci. Rep. 11, 1–16. (2021).
Google Scholar
Jarrard, R. D. Relations among subduction parameters. Rev. Geophys. 24, 217–284. (1986).
Google Scholar
Lallemand, S., Heuret, A. & Boutelier, D. On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochem. Geophys. Geosyst. (2005).
Google Scholar
Syracuse, E. M. & Abers, G. A. Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem. Geophys. Geosyst. (2006).
Google Scholar
Schellart, W. P., Freeman, J., Stegman, D. R., Moresi, L. & May, D. Evolution and diversity of subduction zones controlled by slab width. Nature (London) 446, 308–311 (2007).
Google Scholar
MacDougall, J. G., Kincaid, C., Szwaja, S. & Fischer, K. M. The impact of slab dip variations, gaps and rollback on mantle wedge flow: Insights from fluids experiments. Geophys. J. Int. 197, 705–730. (2014).
Google Scholar
Hu, J. & Gurnis, M. Subduction duration and slab dip. Geochem. Geophys. Geosyst. 21, 1–34. (2020).
Google Scholar
Schellart, W. P. Control of subduction zone age and size on flat slab subduction. Front. Earth Sci. 8, 1–18. (2020).
Google Scholar
Clennett, E. J. et al. A quantitative tomotectonic plate reconstruction of Western North America and the Eastern Pacific basin. Geochem. Geophys. Geosyst. 21, 1–25. (2020).
Google Scholar
Grose, C. J. Properties of oceanic lithosphere: Revised plate cooling model predictions. Earth Planet. Sci. Lett. 333–334, 250–264. (2012).
Google Scholar
Richards, F. D., Hoggard, M. J., Cowton, L. R. & White, N. J. Reassessing the thermal structure of oceanic lithosphere with revised global inventories of basement depths and heat flow measurements. J. Geophys. Res. Solid Earth 123, 9136–9161. (2018).
Google Scholar
Richards, F., Hoggard, M., Crosby, A., Ghelichkhan, S. & White, N. Structure and dynamics of the oceanic lithosphere-asthenosphere system. Phys. Earth Planet. Inter. (2020).
Google Scholar
Hayes, G. P. et al. Slab2, a comprehensive subduction zone geometry model. Science 362, 58–61. (2018).
Google Scholar
Giuliani, A. & Pearson, D. G. Kimberlites: From deep earth to diamond mines. Elements 15, 377–380. (2019).
Google Scholar
Met Office. Cartopy: a cartographic python library with a Matplotlib interface. Exeter, Devon, (2023).
Conrad, C. P. & Lithgow-Bertelloni, C. The temporal evolution of plate driving forces: Importance of slab suction versus slab pull during the Cenozoic. J. Geophys. Res. Solid Earth 109, 1–14. (2004).
Google Scholar
Capitanio, F. A., Morra, G. & Goes, S. Dynamics of plate bending at the trench and slab-plate coupling. Geochem. Geophys. Geosyst. (2009).
Google Scholar
Tetley, M. G., Williams, S. E., Gurnis, M., Flament, N. & Müller, R. D. Constraining absolute plate motions since the Triassic. J. Geophys. Res. Solid Earth 124, 7231–7258. (2019).
Google Scholar
Müller, R. D. et al. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics 38, 1884–1907. (2019).
Google Scholar
Müller, R. D. et al. GPlates: Building a virtual earth through deep time. Geochem. Geophys. Geosyst. 19, 2243–2261. (2018).
Google Scholar
Parsons, B. & Sclater, J. G. An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res. 82, 803–827. (1977).
Google Scholar
Capitanio, F. A., Stegman, D. R., Moresi, L. N. & Sharples, W. Upper plate controls on deep subduction, trench migrations and deformations at convergent margins. Tectonophysics 483, 80–92. (2010).
Google Scholar
Schepers, G. et al. South-American plate advance and forced Andean trench retreat as drivers for transient flat subduction episodes. Nat. Commun. 8, 1–9. (2017).
Google Scholar
Gonzalez, C. M., Gorczyk, W. & Gerya, T. V. Decarbonation of subducting slabs: Insight from petrological–thermomechanical modeling. Gondwana Res. 36, 314–332. (2016).
Google Scholar
Keller, T., Katz, R. F. & Hirschmann, M. M. Volatiles beneath mid-ocean ridges: Deep melting, channelised transport, focusing, and metasomatism. Earth Planet. Sci. Lett. 464, 55–68. (2017).
Google Scholar
Seton, M. et al. A global data set of present-day oceanic crustal age and seafloor spreading parameters. Geochem. Geophys. Geosyst. 21, e2020GC009214. (2020).
Google Scholar
Dutkiewicz, A., Müller, R. D., Cannon, J., Vaughan, S. & Zahirovic, S. Sequestration and subduction of deep-sea carbonate in the global ocean since the early cretaceous. Geology 47, 91–94. (2019).
Google Scholar
Merdith, A. S., Atkins, S. E. & Tetley, M. G. Tectonic controls on carbon and serpentinite storage in subducted upper oceanic lithosphere for the past 320 Ma. Front. Earth Sci. 7, 1–23. (2019).
Google Scholar
Faccenda, M., Gerya, T. V. & Burlini, L. Deep slab hydration induced by bending-related variations in tectonic pressure. Nat. Geosci. 2, 790–793. (2009).
Google Scholar
Korenaga, J. Initiation and evolution of plate tectonics on earth: Theories and observations. Ann. Rev. Earth Planet. Sci. 41, 117–151. (2013).
Google Scholar
Afonso, J. C., Ranalli, G. & Fernàndez, M. Density structure and buoyancy of the oceanic lithosphere revisited. Geophys. Res. Lett. (2007).
Google Scholar
Gurnis, M., Hall, C. & Lavier, L. Evolving force balance during incipient subduction. Geochem. Geophys. Geosyst. (2004).
Google Scholar
Knesel, K. M., Cohen, B. E., Vasconcelos, P. M. & Thiede, D. S. Rapid change in drift of the Australian plate records collision with Ontong Java plateau. Nature 454, 754–757. (2008).
Google Scholar
Liu, L. et al. The role of oceanic plateau subduction in the Laramide orogeny. Nat. Geosci. 3, 353–357. (2010).
Google Scholar
Mao, W. & Zhong, S. Slab stagnation due to a reduced viscosity layer beneath the mantle transition zone. Nat. Geosci. 11, 876–881. (2018).
Google Scholar
King, S. D., Frost, D. J. & Rubie, D. C. Why cold slabs stagnate in the transition zone. Geology 43, 231–234. (2015).
Google Scholar
Chen, Y. W., Wu, J. & Suppe, J. Southward propagation of Nazca subduction along the Andes. Nature 565, 441–447. (2019).
Google Scholar
Jelsma, H., Barnett, W., Richards, S. & Lister, G. Tectonic setting of kimberlites. Lithos 112, 155–165. (2009).
Google Scholar
Currie, C. A. & Beaumont, C. Are diamond-bearing Cretaceous kimberlites related to low-angle subduction beneath western North America?. Earth Planet. Sci. Lett. 303, 59–70. (2011).
Google Scholar
Kjarsgaard, B. A., Heaman, L. M., Sarkar, C. & Pearson, D. G. The North America mid-Cretaceous kimberlite corridor: Wet, edge-driven decompression melting of an OIB-type deep mantle source. Geochem. Geophys. Geosyst. 18, 2727–2747. (2017).
Google Scholar
Chen, Y. et al. Reconciling seismic structures and Late Cretaceous kimberlite magmatism in northern Alberta, Canada. Geology 48, 872–876. (2020).
Google Scholar
Mather, B. R. et al. Intraplate volcanism triggered by bursts in slab flux. Sci. Adv. 6, 1–8. (2020).
Google Scholar
He, C. Imprints of subducted Palaeo-Tethys oceanic lithosphere on upper-mantle discontinuities and the formation of the Emeishan large igneous province. Geophys. J. Int. 231, 1298–1308. (2022).
Google Scholar
Yang, J. & Faccenda, M. Intraplate volcanism originating from upwelling hydrous mantle transition zone. Nature 579, 88–91. (2020).
Google Scholar
García-Reyes, A. & Dyment, J. Structure, age, and origin of the Caribbean Plate unraveled. Earth Planet. Sci. Lett. 571, 117100. (2021).
Google Scholar
Giuliani, A. et al. Kimberlite genesis from a common carbonate-rich primary melt modified by lithospheric mantle assimilation. Sci. Adv. 6, 1–10. (2020).
Google Scholar
Moresi, L. & Mather, B. Stripy. A Python module for (constrained) triangulation in Cartesian coordinates and on a sphere. Journal of Open Source Software 4, 1410. (2019).
Google Scholar
Jackson, M. G., Konter, J. G. & Becker, T. W. Primordial helium entrained by the hottest mantle plumes. Nature 542, 340–343. (2017).
Google Scholar
Celli, N. L., Lebedev, S., Schaeffer, A. J. & Gaina, C. African cratonic lithosphere carved by mantle plumes. Nat. Commun. (2020).
Google Scholar
Regier, M. E. et al. The lithospheric-to-lower-mantle carbon cycle recorded in superdeep diamonds. Nature 585, 234–238. (2020).
Google Scholar
Axen, G. J., van Wijk, J. W. & Currie, C. A. Basal continental mantle lithosphere displaced by flat-slab subduction. Nat. Geosci. 11, 961–964. (2018).
Google Scholar
Currie, C. A. & Copeland, P. Numerical models of Farallon plate subduction: Creating and removing a flat slab. Geosphere 18, 476–502. (2022).
Google Scholar
Humphreys, E. D. Post-Laramide removal of the Farallon slab, western United States. Geology 23, 987. (1995).
Google Scholar