Keil, K. Angrites, a small but diverse suite of ancient, silica-undersaturated volcanic–plutonic mafic meteorites, and the history of their parent asteroid. Geochemistry 72, 191–218 (2012).
Mittlefehldt, D. W., Killgore, M. & Lee, M. T. Petrology and geochemistry of D’Orbigny, geochemistry of Sahara 99555 and the origin of angrites. Meteorit. Planet. Sci. 37, 345–369 (2002).
Google Scholar
Kruijer, T. S., Kleine, T. & Borg, L. E. The great isotopic dichotomy of the early Solar System. Nat. Astron. 4, 32–40 (2020).
Google Scholar
Papike, J. J., Burger, P. V., Bell, A. S. & Shearer, C. K. Mn–Fe systematics in major planetary body reservoirs in the solar system and the positioning of the Angrite Parent Body: a crystal-chemical perspective. Am. Mineral. 102, 1759–1762 (2017).
Google Scholar
Zhu, K. et al. Timing and origin of the Angrite Parent Body inferred from Cr isotopes. Astrophys. J. Lett. 887, L13 (2019).
Google Scholar
Santos, A. R., Agee, C. B., Shearer, C. K., & McCubbin, F. M. Northwest Africa 8535 and Northwest Africa 10463: new insights into the angrite parent body. Abstr. Lun. Planet. Sci. Conf. 47, 2590 (2016).
Reger, P. M. et al. Chronology of the unique angrite Northwest Africa 10463. In Proc. 84th Annual Meeting of the Meteoritical Society 6235 (LPI, 2021).
Greenwood, R. C., Franchi, I. A., Jambon, A. & Buchanan, P. C. Widespread magma oceans on asteroidal bodies in the early Solar System. Nature 435, 916–918 (2005).
Google Scholar
Greenwood, R. C., Burbine, T. H., Miller, M. F. & Franchi, I. A. Melting and differentiation of early-formed asteroids: the perspective from high precision oxygen isotope studies. Geochemistry 77, 1–43 (2017).
Google Scholar
Scott, E. R. D. & Bottke, W. F. Impact histories of angrites, eucrites and their parent bodies. Meteorit. Planet. Sci. 46, 1878–1887 (2011).
Google Scholar
Jambon, A. et al. Mineralogy and petrology of the angrite Northwest Africa 1296. Meteorit. Planet. Sci. 40, 361–375 (2005).
Google Scholar
Jambon, A. et al. Petrology and mineralogy of the angrite Northwest Africa 1670. Meteorit. Planet. Sci. 43, 1783–1795 (2008).
Google Scholar
Mikouchi, T., Hasegawa, H., Takenouchi, A., & Kagi, H. Olivine xenocrysts in Asuka-881371 revisited. Abstr. Lun. Planet. Sci. Conf. 46, 2065 (2015).
Mikouchi, T., et al. Mineralogy of olivine xenocrysts in Asuka 12009 angrite. Abstr. Lun. Planet. Sci. Conf. 48, 2206 (2017).
Miller, M. F., Franchi, I. A., Sexton, A. S. & Pillinger, C. T. High precision δ17O isotope measurements of oxygen from silicates and other oxides: method and applications. Rapid Commun. Mass Spectrom. 13, 1211–1217 (1999).
Google Scholar
Starkey, N. A. et al. Triple oxygen isotopic composition of the high-3He/4He mantle. Geochim. Cosmochim. Acta 176, 227–238 (2016).
Google Scholar
Trepmann, C. A., Renner, J. & Druiventak, A. Experimental deformation and recrystallization of olivine—processes and timescales of damage healing during postseismic relaxation at mantle depths. Solid Earth Discuss. 5, 463–524 (2013).
Google Scholar
Janots, E. et al. Jiddat al Harasis 556: a howardite impact melt breccia with an H chondrite component. Meteorit. Planet. Sci. 47, 1558–1574 (2012).
Google Scholar
Janots, E. et al. Jiddat al Harasis 422: a ureilite with an extremely high degree of shock melting. Meteorit. Planet. Sci. 46, 134–148 (2011).
Google Scholar
Nazarov, M. A., Brandstätter, F., & Kurat, G. Angrite-like clasts from the Erevan howardite. Abstr. Lun. Planet. Sci. Conf. 26, 1033 (1995).
Cohen, B. A., Goodrich, C. A. & Keil, K. Feldspathic clast populations in polymict ureilites: stalking the missing basalts from the ureilite parent body. Geochim. Cosmochim. Acta 64, 4249–4266 (2004).
Google Scholar
Kita, N. T. et al. Origin of ureilites, inferred from a SIMS oxygen isotopic and trace element study of clasts in the Dar al Gani polymict ureilites. Geochim. Cosmochim. Acta 68, 4213–4235 (2004).
Google Scholar
Zhang, A. C. et al. Unique angrite-like fragments in a CH3 chondrite reveal a new basaltic planetesimal. Geochim. Cosmochim. Acta 275, 48–63 (2020).
Google Scholar
Jambon, A., Baghdadi, B., & Barrat, J. A. Peridotitic angrites are chimerolites. Abstr. Lun. Planet. Sci. Conf. 43, 1758 (2012).
Sarafian, A. R. et al. Early accretion of water and volatile elements to the inner Solar System: evidence from angrites. Phil. Trans. R. Soc. 375, 20160209.
Deligny, C., Füri, E. & Deloule, E. Origin and timing of volatile delivery (N, H) to the angrite parent body: constraints from in situ analyses of melt inclusions. Geochim. Cosmochim. Acta 313, 243–256 (2021).
Google Scholar
Greenwood, R. C., Burbine, T. H. & Franchi, I. A. Linking asteroids and meteorites to the primordial planetesimal population. Geochim. Cosmochim. Acta 277, 377–406 (2020).
Google Scholar
Clayton, R. N., Mayeda, T. K., Goswami, J. N. & Olsen, E. J. Oxygen isotope studies of ordinary chondrites. Geochim. Cosmochim. Acta 55, 2317–2337 (1991).
Google Scholar
Riches, A. J. V. et al. Rhenium–osmium isotope and highly-siderophile-element abundance systematics of angrite meteorites. Earth Planet. Sci. Lett. 353–354, 208–218 (2012).
Google Scholar
Steenstra, E. S. et al. The effect of melt composition on metal–silicate partitioning of siderophile elements and constraints on core formation in the angrite parent body. Geochim. Cosmochim. Acta 212, 62–83 (2017).
Google Scholar
Isa, J., Rubin, A. E. & Wasson, J. T. R-chondrite bulk-chemical compositions and diverse oxides: implications for parent-body processes. Geochim. Cosmochim. Acta 124, 131–151 (2014).
Google Scholar
Morbidelli, A., Walsh, K. J., O’Brien, D. P., Minton, D. A. & Bottke, W. F. in Asteroids IV (eds Michel, P. et al.) 493–507 (Univ. Arizona Press, 2015).
Greenwood, R. C. et al. Oxygen isotopic evidence for accretion of Earth’s water before a high-energy Moon-forming giant impact. Sci. Adv. 4, eaao5928 (2018).
Google Scholar
Qin, L. & Carlson, R. W. Nucleosynthetic isotope anomalies and their cosmochemical significance. Geochem. J. 50, 43–65 (2016).
Google Scholar
Raymond, S. N., Izidoro, A. & Morbidelli, A. in Planetary Astrobiology (eds Meadows, V. et al.) 287–234 (Univ. Arizona Press, 2020).
Johnson, B. C., Walsh, K. J., Minton, D. A., Krot, A. N. & Levison, H. F. Timing of the formation and migration of giant planets as constrained by CB chondrites. Sci. Adv. 2, e1601658 (2016).
Google Scholar
Walsh, K., Morbidelli, A., Raymond, S., O’Brien, D. P. & Mandell, A. M. A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011).
Google Scholar
Connelly, J. N. et al. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651–655 (2012).
Google Scholar
Wang, H. et al. Lifetime of the solar nebula constrained by meteorite paleomagnetism. Science 355, 623–627 (2017).
Google Scholar
Brennecka, G. A. & Wadhwa, M. Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early Solar System. Proc. Natl Acad. Sci. USA 109, 9299–9303 (2012).
Google Scholar
Clayton, R. N. & Mayeda, T. K. Oxygen isotope studies of achondrites. Geochim. Cosmochim. Acta 60, 1999–2017 (1996).
Google Scholar
Miller, M. F. Isotopic fractionation and the quantification of 17O anomalies in the oxygen three-isotope system: an appraisal and geochemical significance. Geochim. Cosmochim. Acta 66, 1881–1889 (2002).
Google Scholar
Martins, Z. et al. Amino acid composition, petrology, geochemistry, 14C terrestrial age and oxygen isotopes of the Shisr 033 CR chondrite. Meteorit. Planet. Sci. 42, 1581–1595 (2010).
Google Scholar