Ritchie, H. & Roser, M. Natural disasters. Our World in Data (2014).
Tanoue, M., Hirabayashi, Y. & Ikeuchi, H. Global-scale river flood vulnerability in the last 50 years. Sci. Rep. 6, 36021. (2016).
Google Scholar
Samanta, S., Koloa, C., Kumar Pal, D. & Palsamanta, B. Flood risk analysis in lower part of Markham river based on multi-criteria decision approach (MCDA). Hydrology 3, 29. (2016).
Google Scholar
Cao, W. et al. Increasing global urban exposure to flooding: An analysis of long-term annual dynamics. Sci. Total Environ. 817, 153012. (2022).
Google Scholar
Galasso, C. & Senarath, S. U. S. In Vulnerability, uncertainty, and risk 1415–1424 (2014).
Loudyi, D. & Kantoush, S. A. Flood risk management in the middle east and north Africa (MENA) region. Urban Water J. 17, 379–380. (2020).
Google Scholar
Mustafa, A. & Szydłowski, M. The impact of spatiotemporal changes in land development (1984–2019) on the increase in the runoff coefficient in Erbil Kurdistan Region of Iraq. Remote Sens. 12, 1302. (2020).
Google Scholar
Doocy, S., Daniels, A., Murray, S. & Kirsch, T. D. The human impact of floods: A historical review of events 1980–2009 and systematic literature review. PLoS Curr. (2013).
Google Scholar
Abdelkarim, A., Gaber, A. F. D., Youssef, A. M. & Pradhan, B. Flood hazard assessment of the urban area of Tabuk City, Kingdom of Saudi Arabia by integrating spatial-based hydrologic and hydrodynamic modeling. Sensors 19, 1024. (2019).
Google Scholar
Bouaida, J., Witam, O., Ibnoussina, M., Delmaki, A. E. F. & Benkirane, M. Contribution of remote sensing and GIS to analysis of the risk of flooding in the Zat basin (High Atlas-Morocco). Nat. Hazards 108, 1835–1851. (2021).
Google Scholar
Desalegn, H. & Mulu, A. Mapping flood inundation areas using GIS and HEC-RAS model at Fetam river, upper Abbay basin Ethiopia. Sci. Afr. 12, e00834. (2021).
Google Scholar
Hermas, E., Gaber, A. & El Bastawesy, M. Application of remote sensing and GIS for assessing and proposing mitigation measures in flood-affected urban areas Egypt. Egypt. J. Remote Sens. Space Sci. 24, 119–130. (2021).
Google Scholar
Portugués-Mollá, I., Bonache-Felici, X., Mateu-Bellés, J. F. & Marco-Segura, J. B. A GIS-based model for the analysis of an urban flash flood and its hydro-geomorphic response. The Valencia event of 1957. J. Hydrol. 541, 582–596. (2016).
Google Scholar
Samela, C., Albano, R., Sole, A. & Manfreda, S. A GIS tool for cost-effective delineation of flood-prone areas. Comput. Environ. Urban Syst. 70, 43–52. (2018).
Google Scholar
Mohamed, S. A. Application of satellite image processing and GIS-Spatial modeling for mapping urban areas prone to flash floods in Qena governorate. Egypt. J. Afric. Earth Sci. 158, 103507. (2019).
Google Scholar
Szydłowski, M. et al. In 14th International Symposium Water Management and Hydraulic Engineering.
Assaf, A. T., Sayl, K. N. & Adham, A. In Journal of Physics: Conference Series. 012149 (IOP Publishing).
Mohammed, O. & Sayl, K. In IOP Conference Series: Earth and Environmental Science. 012049 (IOP Publishing).
Courty, L. G., Rico-Ramirez, M. Á. & Pedrozo-Acuña, A. The significance of the spatial variability of rainfall on the numerical simulation of urban floods. Water 10, 207 (2018).
Google Scholar
Notaro, V., Fontanazza, C. M., Freni, G. & Puleo, V. Impact of rainfall data resolution in time and space on the urban flooding evaluation. Water Sci. Technol. 68, 1984–1993. (2013).
Google Scholar
Rahmani, V., Hutchinson, S. L., Harrington, J. A. Jr. & Hutchinson, J. M. S. Analysis of frequency and magnitude of extreme rainfall events with potential impacts on flooding: A case study from the central United States. Int. J. Climatol. 36, 3578–3587. (2016).
Google Scholar
Faisal Koko, A., Yue, W., AbdullahiAbubakar, G., Hamed, R. & Noman Alabsi, A. A. Analyzing urban growth and land cover change scenario in Lagos, Nigeria using multi-temporal remote sensing data and GIS to mitigate flooding. Geomat. Nat. Hazards Risk 12, 631–652. (2021).
Google Scholar
Hussein, K., Alkaabi, K., Ghebreyesus, D., Liaqat, M. U. & Sharif, H. O. Land use/land cover change along the eastern coast of the UAE and its impact on flooding risk. Geomat. Nat. Haz. Risk 11, 112–130. (2020).
Google Scholar
Moniruzzaman, M. et al. Decadal Urban land use/land cover changes and its impact on surface runoff potential for the Dhaka city and surroundings using remote sensing. Remote Sens. 13, 83 (2021).
Google Scholar
Pabi, O., Egyir, S. & Attua, E. M. Flood hazard response to scenarios of rainfall dynamics and land use and land cover change in an urbanized river basin in Accra Ghana. City Environ. Interact. 12, 100075. (2021).
Google Scholar
Johnson, B. A. et al. High-resolution urban change modeling and flood exposure estimation at a national scale using open geospatial data: A case study of the Philippines. Comput. Environ. Urban Syst. 90, 101704 (2021).
Google Scholar
Tierolf, L., de Moel, H. & van Vliet, J. Modeling urban development and its exposure to river flood risk in Southeast Asia. Comput. Environ. Urban Syst. 87, 101620 (2021).
Google Scholar
Cabrera, J. S. & Lee, H. S. Flood risk assessment for Davao oriental in the Philippines using geographic information system-based multi-criteria analysis and the maximum entropy model. J. Flood Risk Manag. 13, e12607. (2020).
Google Scholar
Mahmoud, S. H. & Gan, T. Y. Urbanization and climate change implications in flood risk management: Developing an efficient decision support system for flood susceptibility mapping. Sci. Total Environ. 636, 152–167. (2018).
Google Scholar
Oubennaceur, K., Chokmani, K., Nastev, M., Lhissou, R. & El Alem, A. Flood risk mapping for direct damage to residential buildings in Quebec, Canada. Int. J. Disaster Risk Reduct. 33, 44–54. (2019).
Google Scholar
Rincón, D., Khan, U. T. & Armenakis, C. Flood risk mapping using GIS and multi-criteria analysis: A greater Toronto area case study. Geosciences 8, 275. (2018).
Google Scholar
Amen, M. et al. Mapping of flood-prone areas utilizing GIS techniques and remote sensing: A case study of Duhok Kurdistan Region of Iraq. Remote Sens. 15, 1102 (2023).
Google Scholar
Mohammed, S. S., Sayl, K. N. & Kamel, A. H. Ground water recharge mapping in Iraqi Western desert. Int. J. Des. Nat. Ecodyn. 17, 913–920. (2022).
Google Scholar
Muneer, A. S., Sayl, K. N. & Kamal, A. H. Modeling of spatially distributed infiltration in the Iraqi western desert. Appl. Geomat. 13, 467–479. (2021).
Google Scholar
Szeląg, B. et al. Influence of urban catchment characteristics and rainfall origins on the phenomenon of stormwater flooding: Case study. Environ. Model. Softw. 150, 105335. (2022).
Google Scholar
Sayl, K. N., Sulaiman, S. O., Kamel, A. H. & Al-Ansari, N. Towards the generation of a spatial hydrological soil group map based on the radial basis network model and spectral reflectance band recognition. Int. J. Des. Nat. Ecodyn. 17, 761–766 (2022).
Google Scholar
El-Saoud, W. A. & Othman, A. An integrated hydrological and hydraulic modelling approach for flash flood hazard assessment in eastern Makkah city, Saudi Arabia. J. King Saud. Univ. Sci. 34, 102045. (2022).
Google Scholar
Szydlowski, M. Transboundary floods: Reducing risks through flood management (Springer, 2006).
Néelz, S. & Pender, G. Benchmarking the latest generation of 2D hydraulic modelling packages. Environment Agency, Horison House, Deanery Road, Bristol, BS1 9AH (2013).
Glenis, V., Kutija, V. & Kilsby, C. G. A fully hydrodynamic urban flood modelling system representing buildings, green space and interventions. Environ. Model. Softw. 109, 272–292. (2018).
Google Scholar
Macalalad, R. V. et al. Flash flood modeling in the data-poor basin: A case study in Matina river basin. Trop. Cyclone Res. Rev. 10, 87–95. (2021).
Google Scholar
Costabile, P., Costanzo, C., Ferraro, D., Macchione, F. & Petaccia, G. Performances of the new HEC-RAS version 5 for 2-D hydrodynamic-based rainfall-runoff simulations at basin scale: Comparison with a state-of-the art model. Water 12, 2326. (2020).
Google Scholar
Mustafa, A. & Szydłowski, M. Application of different building representation techniques in HEC-RAS 2-D for urban flood modeling using the Toce River experimental case. PeerJ 9, e11667. (2021).
Google Scholar
Alipour, A., Jafarzadegan, K. & Moradkhani, H. Global sensitivity analysis in hydrodynamic modeling and flood inundation mapping. Environ. Model. Softw. 152, 105398. (2022).
Google Scholar
Ibrahim, R. I., Mushatat, S. A. & Abdelmonem, M. G. Erbil. Cities 49, 14–25. (2015).
Google Scholar
Gunes, C. Kurds in a new middle east (Springer, 2019).
Google Scholar
Mustafa, A. M., Muhammed, H. H. & Szydlowski, M. Extreme rainfalls as a cause of urban flash floods; A case study of the Erbil-Kurdistan region of IRAQ. Acta Scientiarum Polonorum. Formatio Circumiectus 18, 113–132. (2019).
Google Scholar
Löwe, R. et al. Impacts of urban development on urban water management–limits of predictability. Comput. Environ. Urban Syst. 84, 101546. (2020).
Google Scholar
Gizaw, M. S. & Gan, T. Y. Possible impact of climate change on future extreme precipitation of the oldman, bow and red deer river basins of Alberta. Int. J. Climatol. 36, 208–224. (2016).
Google Scholar
Jiang, R., Gan, T. Y., Xie, J., Wang, N. & Kuo, C.-C. Historical and potential changes of precipitation and temperature of Alberta subjected to climate change impact: 1900–2100. Theoret. Appl. Climatol. 127, 725–739. (2017).
Google Scholar
Courty, L. G., Wilby, R. L., Hillier, J. K. & Slater, L. J. Intensity-duration-frequency curves at the global scale. Environ. Res. Lett. 14, 084045. (2019).
Google Scholar
Noor, M., Ismail, T., Chung, E.-S., Shahid, S. & Sung, J. H. Uncertainty in rainfall intensity duration frequency curves of peninsular Malaysia under changing climate scenarios. Water 10, 1750. (2018).
Google Scholar
ShahabulAlam, M. & Elshorbagy, A. Quantification of the climate change-induced variations in intensity–duration–frequency curves in the Canadian prairies. J. Hydrol. 527, 990–1005. (2015).
Google Scholar
Kareem, D. A., Amen, A. R., Mustafa, A., Yüce, M. I. & Szydłowski, M. Comparative analysis of developed rainfall intensity–duration–frequency curves for Erbil with other Iraqi Urban areas. Water 14, 419. (2022).
Google Scholar
Bouwer, L. M., Bubeck, P. & Aerts, J. C. J. H. Changes in future flood risk due to climate and development in a Dutch polder area. Glob. Environ. Chang. 20, 463–471. (2010).
Google Scholar
de Kok, J.-L. & Grossmann, M. Large-scale assessment of flood risk and the effects of mitigation measures along the Elbe river. Nat. Hazards 52, 143–166. (2010).
Google Scholar
Gouldby, B. Uncertainty and sensitvity analysis method for flood risk analysis. T24–08–01 (2009).
Relifeweb. Iraq: Flash Floods – Dec 2021, < (2021).
Erbil Govornorate. Media Statement, < (2021).
Kurdistan Region Statics, O. Report of the expectation of Kurdistan Region Population from 2009–2020. (Erbil- Kurdistan Region of Iraq, 2014).
Al-Ansari, N. Management of water resources in Iraq: Perspectives and prognoses. Engineering 5, 667–684 (2013).
Google Scholar
Hameed, H. M. Estimating the effect of urban growth on annual runoff volume using GIS in the Erbil sub-basin of the Kurdistan region of Iraq. Hydrology 4, 12. (2017).
Google Scholar
Li, J. & Wong, D. W. Effects of DEM sources on hydrologic applications. Comput. Environ. Urban Syst. 34, 251–261. (2010).
Google Scholar
NRCS, U. Chapter 7–Hydrologic soil groups in: NRCS–National engineering handbook (NEH), Part 630–hydrology. USDA NRCS, Washington, DC, 7.1–7.5 (2009).
Brunner, G. W. C.-H. HEC-RAS river analysis system 2D modeling user’s manual. (US Army Corps of Engineers—Hydrologic Engineering Center, 2021).
Brunner, G. W. (2021) HEC-RAS River Analysis System2D Hydraulic reference manual, Version 6.0 (US Army Corps of Engineers—Hydrologic Engineering Center, London).
Aronica, G. & Lanza, L. Drainage efficiency in urban areas: A case study. Hydrol. Process. Int. J. 19, 1105–1119. (2005).
Google Scholar
Gallien, T., Schubert, J. & Sanders, B. Predicting tidal flooding of urbanized embayments: A modeling framework and data requirements. Coast. Eng. 58, 567–577. (2011).
Google Scholar
Hunter, N. et al. In Proceedings of the Institution of Civil Engineers-Water Management. 13–30 (Thomas Telford Ltd).
Li, Z. et al. Comparative analysis of building representations in TELEMAC-2D for flood inundation in idealized Urban districts. Water 11, 1840. (2019).
Google Scholar
Schubert, J. E. & Sanders, B. F. Building treatments for urban flood inundation models and implications for predictive skill and modeling efficiency. Adv. Water Resour. 41, 49–64. (2012).
Google Scholar
Chow, V. T. Open-channel hydraulics (McGraw-Hill civil engineering series, 1959).
Cronshey, R. Urban hydrology for small watersheds (US Department of Agriculture Soil Conservation Service, Engineering Division, 1986).
Huff, F. A. Time distribution of rainfall in heavy storms. Water Resour. Res. 3, 1007–1019. (1967).
Google Scholar
Mark, O., Weesakul, S., Apirumanekul, C., Aroonnet, S. B. & Djordjević, S. Potential and limitations of 1D modelling of urban flooding. J. Hydrol. 299, 284–299. (2004).
Google Scholar
Gharbi, M., Soualmia, A., Dartus, D. & Masbernat, L. Comparison of 1D and 2D hydraulic models for floods simulation on the Medjerda Riverin Tunisia. J. Mater. Environ. Sci 7, 3017–3026 (2016).
Liu, Y. & Pender, G. Carlisle 2005 urban flood event simulation using cellular automata-based rapid flood spreading model. Soft. Comput. 17, 29–37. (2013).
Google Scholar
Shen, D., Wang, J., Cheng, X., Rui, Y. & Ye, S. Integration of 2-D hydraulic model and high-resolution lidar-derived DEM for floodplain flow modeling. Hydrol. Earth Syst. Sci. 19, 3605–3616. (2015).
Google Scholar
Dazzi, S., Shustikova, I., Domeneghetti, A., Castellarin, A. & Vacondio, R. Comparison of two modelling strategies for 2D large-scale flood simulations. Environ. Model. Softw. 146, 105225. (2021).
Google Scholar
Yalcin, E. Assessing the impact of topography and land cover data resolutions on two-dimensional HEC-RAS hydrodynamic model simulations for urban flood hazard analysis. Nat. Hazards 101, 995–1017. (2020).
Google Scholar
Surwase, T. et al. In Proceedings of International Conference on Remote Sensing for Disaster Management. 851–863 (Springer).
Liu, Y., Zhang, W. & Cui, X. Flood emergency management using hydrodynamic modelling. Procedia Eng. 28, 750–753. (2012).
Google Scholar
Campana, N. A. & Tucci, C. E. Predicting floods from urban development scenarios: Case study of the Dilúvio Basin, Porto Alegre Brazil. Urban Water 3, 113–124. (2001).
Google Scholar
Rudaw Meida Network. Daily NEWS < (2021).
Sissakian, V. K., Al-Ansari, N., Adamo, N., Abdul Ahad, I. D. & Abed, S. A. Flood hazards in Erbil city Kurdistan region Iraq, 2021: A case study. Engineering 14, 591–601. (2022).
Google Scholar
Gigović, L., Pamučar, D., Bajić, Z. & Drobnjak, S. Application of GIS-interval rough AHP methodology for flood hazard mapping in urban areas. Water 9, 360. (2017).
Google Scholar
Sameer, Y. M., Abed, A. N. & Sayl, K. N. In Journal of Physics: Conference Series. 012060 (IOP Publishing).
Sameer, Y. M., Abed, A. N. & Sayl, K. N. Geomatics-based approach for highway route selection. Appl. Geomat. 15, 161–176. (2023).
Google Scholar
Mattos, T. S. et al. Towards reducing flood risk disasters in a tropical urban basin by the development of flood alert web application. Environ. Model. Softw. 151, 105367. (2022).
Google Scholar