Espinosa, M. A. & Ochaíta, E. Using tactile maps to improve the practical spatial knowledge of adults who are blind. J. Vis. Impair. Blind. 92, 338–345. (1998).
Google Scholar
Long, R. G. & Giudice, N. A. Foundations of orientation and mobility. In History and Theory, ch. 2, 1st edn (eds Wiener, W. R. et al.) 45–62 (American Foundation for the Blind, 2010).
Golledge, R. G. Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes (JHU Press, 1999).
Google Scholar
Blades, M., Lippa, Y., Golledge, R. G., Jacobson, R. D. & Kitchin, R. M. The effect of spatial tasks on visually impaired peoples’ wayfinding abilities. J. Vis. Impair. Blind. 96, 407–419. (2002).
Google Scholar
Kitchin, R. & Blades, M. The Cognition of Geographic Space Vol. 4 (Ib Tauris London, 2002).
Google Scholar
Thinus-Blanc, C. & Gaunet, F. Representation of space in blind persons: Vision as a spatial sense?. Psychol. Bull. 121, 20–42. (1997).
Google Scholar
Passini, R. & Proulx, G. Wayfinding without vision: An experiment with congenitally totally blind people. Environ. Behav. 20, 227–252. (1988).
Google Scholar
Pasqualotto, A. & Proulx, M. J. The role of visual experience for the neural basis of spatial cognition. Neurosci. Biobehav. Rev. 36, 1179–1187. (2012).
Google Scholar
Jeamwatthanachai, W., Wald, M. & Wills, G. Indoor navigation by blind people: Behaviors and challenges in unfamiliar spaces and buildings. Br. J. Vis. Impair. 37, 140–153. (2019).
Google Scholar
Pissaloux, E. & Velazquez, R. Mobility of Visually Impaired People (Springer, 2018).
Google Scholar
World Health Organization. World report on vision (2019).
Morgan, L. K., MacEvoy, S. P., Aguirre, G. K. & Epstein, R. A. Distances between real-world locations are represented in the human hippocampus. J. Neurosci. 31, 1238–1245 (2011).
Google Scholar
Deuker, L., Bellmund, J. L. S., Schröder, T. N. & Doeller, C. F. An event map of memory space in the hippocampus. Elife 5, e16534 (2016).
Google Scholar
Foo, P., Warren, W. H., Duchon, A. & Tarr, M. J. Do humans integrate routes into a cognitive map? Map-versus landmark-based navigation of novel shortcuts. J. Exp. Psychol. Learn. Mem. Cogn. 31, 195–215. (2005).
Google Scholar
Espinosa, M. A., Ungar, S., Ochaita, E., Blades, M. & Spencer, C. Comparing methods for introducing blind and visually impaired people to unfamiliar urban environments. J. Environ. Psychol. 18, 277–287. (1998).
Google Scholar
Rieser, J. J., Guth, D. A. & Hill, E. W. Sensitivity to perspective structure while walking without vision. Perception 15, 173–188. (1986).
Google Scholar
Ungar, S., Blades, M. & Spencer, C. The role of tactile maps in mobility training. Br. J. Vis. Impair. 11, 59–61. (1993).
Google Scholar
Ungar, S., Blades, M., Spencer, C. & Morsley, K. Can visually impaired children use tactile maps to estimate directions?. J. Vis. Impair. Blind. 88, 221–233. (1994).
Google Scholar
Giudice, N. A., Guenther, B. A., Jensen, N. A. & Haase, K. N. Cognitive mapping without vision: Comparing wayfinding performance after learning from digital touchscreen-based multimodal maps vs. embossed Tactile overlays. Front. Hum. Neurosci. 14, 87. (2020).
Google Scholar
Ivanchev, M., Zinke, F. & Lucke, U. Pre-journey visualization of travel routes for the blind on refreshable interactive Tactile displays. In Computers Helping People with Special Needs (ed. Miesenberger, K.) 81–88 (Springer, 2014).
Google Scholar
Caddeo, P., Fornara, F., Nenci, A. M. & Piroddi, A. Wayfinding tasks in visually impaired people: The role of tactile maps. Cogn. Process. 7, 168–169 (2006).
Google Scholar
Cattaneo, Z. & Vecchi, T. Blind Vision: The Neuroscience of Visual Impairment (MIT Press, 2011).
Google Scholar
Wabiński, J., Mościcka, A. & Touya, G. Guidelines for standardizing the design of Tactile maps: A review of research and best practice. Cartogr. J. 8, 1–20. (2022).
Google Scholar
Gaunet, F., Martinez, J.-L. & Thinus-Blanc, C. Early-blind subjects’ spatial representation of manipulatory space: Exploratory strategies and reaction to change. Perception 26, 345–366. (1997).
Google Scholar
Iachini, T., Ruggiero, G. & Ruotolo, F. Does blindness affect egocentric and allocentric frames of reference in small and large scale spaces?. Behav. Brain Res. 273, 73–81. (2014).
Google Scholar
Afonso, A. et al. Structural properties of spatial representations in blind people: Scanning images constructed from haptic exploration or from locomotion in a 3-D audio virtual environment. Mem. Cognit. 38, 591–604. (2010).
Google Scholar
Chiesa, S., Schmidt, S., Tinti, C. & Cornoldi, C. Allocentric and contra-aligned spatial representations of a town environment in blind people. Acta Physiol. (Oxf.) 180, 8–15. (2017).
Google Scholar
Jafri, R. & Ali, S. A. Utilizing 3D printing to assist the blind. In International Conference on Health Informatics and Medical Systems (HIMS’15). Las Vegas, Nevada. 55–61.
Taylor, B., Dey, A., Siewiorek, D. & Smailagic, A. In Proceedings of the 18th International ACM SIGACCESS Conference on Computers and Accessibility 71–79 (Association for Computing Machinery, Reno, 2016).
Touya, G., Christophe, S., Favreau, J.-M. & Ben Rhaiem, A. Automatic derivation of on-demand tactile maps for visually impaired people: First experiments and research agenda. Int. J. Cartogr. 5, 67–91. (2019).
Google Scholar
Götzelmann, T. & Pavkovic, A. Towards Automatically Generated Tactile Detail Maps by 3D Printers for Blind Persons 1–7 (Springer, 2014).
Rener, R., Antona, M. & Stephanidis, C. The 3D printing of tactile maps for persons with visual impairment. Univ. Access Hum. Comput. Interact. Des. Novel Interact. 10278, 335–350. (2017).
Google Scholar
Voigt, A. & Martens, B. Development of 3D tactile models for the partially sighted to facilitate spatial orientation (2006).
Celani, G. C., Milan, L. F. J. V. Rapid manufacturing: Advanced research in v. & rapid, p. Tactile scale models: Three-dimensional info-graphics for space orientation of the blind and visually impaired. 801–805 (2007).
Bleau, M., Jaiswal, A., Holzhey, P. & Wittich, W. Applications of additive manufacturing, or 3D printing, in the rehabilitation of individuals with deafblindness: A scoping study. SAGE Open 12, 21582440221117804. (2022).
Google Scholar
Gual-Orti, J., Puyuelo-Cazorla, M. & Lloveras-Macia, J. Improving tactile map usability through 3D printing techniques: An experiment with new tactile symbols. Cartogr. J. 52, 51–57. (2015).
Google Scholar
Gual Ortí, J., Puyuelo Cazorla, M. & Lloveras Macià, J. Analysis of volumetric tactile symbols produced with 3D printing (2012).
Gual, J., Puyuelo, M., Lloverás, J. & Merino, L. J. P. Visual impairment and urban orientation. Pilot study with tactile maps produced through 3D printing. Psyecology 3, 239–250 (2012).
Google Scholar
Gual, J., Puyuelo, M. & Lloveras, J. Three-dimensional tactile symbols produced by 3D printing: Improving the process of memorizing a tactile map key. Br. J. Vis. Impair. 32, 263–278. (2014).
Google Scholar
Holloway, L., Marriott, K., Butler, M. & Reinders, S. In The 21st International ACM SIGACCESS Conference on Computers and Accessibility 183–195 (Association for Computing Machinery, 2019).
Holloway, L., Marriott, K. & Butler, M. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems Paper 198 (Association for Computing Machinery, 2018).
Norman, J. F. & Bartholomew, A. N. Blindness enhances tactile acuity and haptic 3-D shape discrimination. Atten. Percept. Psychophys. 73, 2323–2331. (2011).
Google Scholar
Stevens, J. C., Foulke, E. & Patterson, M. Q. Tactile acuity, aging, and braille reading in long-term blindness. J. Exp. Psychol. Appl. 2, 91–106. (1996).
Google Scholar
Legge, G. E., Madison, C., Vaughn, B. N., Cheong, A. M. Y. & Miller, J. C. Retention of high tactile acuity throughout the life span in blindness. Percept. Psychophys. 70, 1471–1488. (2008).
Google Scholar
Norman, J. F. et al. Aging and the haptic perception of 3D surface shape. Atten. Percept. Psychophys. 73, 908–918. (2011).
Google Scholar
Ottink, L. et al. Cognitive map formation supported by auditory, haptic, and multimodal information in persons with blindness. Neurosci. Biobehav. Rev. 140, 104797. (2022).
Google Scholar
Ottink, L., Hoogendonk, M., Doeller, C. F., Van der Geest, T. M. & Van Wezel, R. J. A. Cognitive map formation through haptic and visual exploration of tactile city-like maps. Sci. Rep. 11, 15254. (2021).
Google Scholar
Ungar, S. Cognitive Mapping 221–248 (Routledge, 2018).
Lederman, S. J. & Klatzky, R. L. Hand movements: A window into haptic object recognition. Cogn. Psychol. 19, 342–368. (1987).
Google Scholar
Heller, M. A. Picture and pattern perception in the sighted and the blind: The advantage of the late blind. Perception 18, 379–389. (1989).
Google Scholar
Lederman, S. J., Klatzky, R. L., Chataway, C. & Summers, C. D. Visual mediation and the haptic recognition of two-dimensional pictures of common objects. Percept. Psychophys. 47, 54–64. (1990).
Google Scholar
Juurmaa, J. Transposition in mental spatial manipulation: A theoretical analysis. Am. Found. Blind Res. Bull. 26, 87–134 (1973).
Millar, S. Visual experience or translation rules? Drawing the human figure by blind and sighted children. Perception 4, 363–371. (1975).
Google Scholar
Theurel, A., Witt, A., Claudet, P., Hatwell, Y. & Gentaz, E. Tactile picture recognition by early blind children: The effect of illustration technique. J. Exp. Psychol. Appl. 19, 233–240. (2013).
Google Scholar
Lee, M. A smarTactile map designed for the visually impaired to improve spatial cognition. In AHFE 2017 International Conference on Usability and User Experience. Los Angeles, California, USA. 27–38 (Springer, 2018).
Lee, C.-L. An evaluation of tactile symbols in public environment for the visually impaired. Appl. Ergon. 75, 193–200. (2019).
Google Scholar
de Jong, T. Cognitive load theory, educational research, and instructional design: Some food for thought. Instr. Sci. 38, 105–134. (2010).
Google Scholar
Johnson, K. O. & Lamb, G. D. Neural mechanisms of spatial tactile discrimination: Neural patterns evoked by braille-like dot patterns in the monkey. J. Physiol. 310, 117–144. (1981).
Google Scholar
Phillips, J. R., Johnson, K. O. & Hsiao, S. S. Spatial pattern representation and transformation in monkey somatosensory cortex. Proc. Natl. Acad. Sci. 85, 1317–1321. (1988).
Google Scholar
Sutu, A., Meftah, E.-M. & Chapman, C. E. Physical determinants of the shape of the psychophysical curve relating tactile roughness to raised-dot spacing: Implications for neuronal coding of roughness. J. Neurophysiol. 109, 1403–1415. (2012).
Google Scholar
Meftah, E.-M., Bourgeon, S. & Chapman, C. E. Instructed delay discharge in primary and secondary somatosensory cortex within the context of a selective attention task. J. Neurophysiol. 101, 2649–2667. (2009).
Google Scholar
Palivcová, D., Macík, M. & Míkovec, Z. Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems 1–9 (Association for Computing Machinery, 2020).
Google Scholar
Gagnon, L. et al. Activation of the hippocampal complex during tactile maze solving in congenitally blind subjects. Neuropsychologia 50(7), 1663–1671 (2012).
Google Scholar
Miao, M., Zeng, L. & Weber, G. Externalizing cognitive maps via map reconstruction and verbal description. Univ. Access Inf. Soc. 16, 667–680. (2017).
Google Scholar
Papadopoulos, K., Koustriava, E. & Kartasidou, L. Spatial coding of individuals with visual impairments. J. Spec. Educ. 46, 180–190. (2010).
Google Scholar
Bleau, M. et al. Neural substrates of spatial processing and navigation in blindness: An activation likelihood estimation meta-analysis. Front. Neurosci. 16, 1797 (2022).
Google Scholar
Giudice, N. A. Handbook of Behavioral and Cognitive Geography (Edward Elgar Publishing, 2018).
Cappagli, G., Cocchi, E. & Gori, M. Auditory and proprioceptive spatial impairments in blind children and adults. Dev. Sci. (2017).
Google Scholar
Gori, M., Cappagli, G., Baud-Bovy, G. & Finocchietti, S. Shape perception and navigation in blind adults. Front. Psychol. 8, 10. (2017).
Google Scholar
Finocchietti, S., Cappagli, G. & Gori, M. Encoding audio motion: Spatial impairment in early blind individuals. Front. Psychol. 6, 1357. (2015).
Google Scholar
Zwiers, M. P., Van Opstal, A. J. & Cruysberg, J. R. A spatial hearing deficit in early-blind humans. J. Neurosci. 21(Rc142), 141–145. (2001).
Google Scholar
Fortin, M. et al. Wayfinding in the blind: larger hippocampal volume and supranormal spatial navigation. Brain 131, 2995–3005. (2008).
Google Scholar
Kitchin, R. M. & Jacobson, R. D. Techniques to collect and analyze the cognitive map knowledge of persons with visual impairment or blindness: Issues of validity. J. Vis. Impair. Blind. 91, 360–376 (1997).
Google Scholar
Kitchin, R. M., Blades, M. & Golledge, R. G. Understanding spatial concepts at the geographic scale without the use of vision. Prog. Hum. Geogr. 21, 225–242 (1997).
Google Scholar
Ojala, S., Lahtinen, R. & Hirn, H. Tactile maps-safety and usability. In Building Sustainable Health Ecosystems (ed. Li, H.) 15–22 (Springer, 2016).
Google Scholar
Papadopoulos, K., Koustriava, E. & Koukourikos, P. Orientation and mobility aids for individuals with blindness: Verbal description vs. audio-tactile map. Assist. Technol. 30, 191–200. (2018).
Google Scholar
Ducasse, J., Brock, A. M. & Jouffrais, C. Mobility of Visually Impaired People 537–584 (Springer, 2018).
Google Scholar
Engel, C. & Weber, G. Expert study: Design and use of textures for tactile indoor maps with varying elevation levels. In Computers Helping People with Special Needs (ed. Miesenberger, K.) 110–122 (Springer, 2022).
Google Scholar
Bleau, M., van Acker, C., Nemargut, J. P. & Ptito, M. Cognitive map formation in the blind is enhanced by three-dimensional tactile information. Res. Sq. (2022).
Google Scholar
Bleau, M., van Acker, C., Nemargut, J. P. & Ptito, M. Cognitive map formation in the blind is enhanced by three-dimensional tactile information. PsyArXiv (2022).
Google Scholar
Bullens, J., Székely, E., Vedder, A. & Postma, A. The effect of experience on children’s ability to show response and place learning. Br. J. Dev. Psychol. 28, 909–920. (2010).
Google Scholar
Piper, B. J., Acevedo, S. F., Craytor, M. J., Murray, P. W. & Raber, J. The use and validation of the spatial navigation Memory Island test in primary school children. Behav. Brain Res. 210, 257–262. (2010).
Google Scholar
Liu, Z., Kurokawa, K., Zhang, F., Lee, J. J. & Miller, D. T. Imaging and quantifying ganglion cells and other transparent neurons in the living human retina. Proc. Natl. Acad. Sci. U. S. A. 114, 12803–12808. (2017).
Google Scholar
Fernandez-Baizan, C., Arias, J. L. & Mendez, M. Spatial orientation assessment in preschool children: Egocentric and allocentric frameworks. Appl. Neuropsychol. Child 10, 171–193. (2021).
Google Scholar
Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K. & Subbiah, I. Development of a self-report measure of environmental spatial ability. Intelligence 30, 425–447. (2002).
Google Scholar
Halko, M. A., Connors, E. C., Sánchez, J. & Merabet, L. B. Real world navigation independence in the early blind correlates with differential brain activity associated with virtual navigation. Hum. Brain Mapp. 35, 2768–2778. (2014).
Google Scholar
Meaidi, A., Jennum, P., Ptito, M. & Kupers, R. The sensory construction of dreams and nightmare frequency in congenitally blind and late blind individuals. Sleep Med. 15, 586–595. (2014).
Google Scholar
Bleau, M. et al. Blindness and the reliability of downwards sensors to avoid obstacles: A study with the EyeCane. Sensors (2021).
Google Scholar
Bleau, M. & Djerourou, I. Promoting open-science and accessible student training: The open-science fabrication laboratory model. OSF Preprints (2023).
Google Scholar
JASP (Version 0.16.3)[Computer software] (2022).