Banerdt, W. B. et al. Initial results from the InSight mission on Mars. Nat. Geosci. 13, 183–189 (2020).
Google Scholar
Folkner, W. M. et al. The rotation and interior structure experiment on the InSight mission to Mars. Space Sci. Rev. 214, 100 (2018).
Google Scholar
Dehant, V. & Mathews, P. M. Precession, Nutation and Wobble of the Earth (Cambridge Univ. Press, 2015).
Sasao, T., Okubo, S. & Saito, M. A simple theory on dynamical effects of stratified fluid core upon nutational motion of the Earth. Proc. IAU Symp. 78, 165–183 (1980).
Folkner, W. M. et al. Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder. Science 278, 1749–1752 (1997).
Google Scholar
Yoder, C. F. & Standish, E. M. Martian precession and rotation from Viking lander range data. J. Geophys. Res. 102, 4065–4080 (1997).
Google Scholar
Evans, S. et al. MONTE: the next generation of mission design and navigation software. CEAS Space J. 10, 79–86 (2018).
Google Scholar
Marty, J. C. et al. GINS: the CNES/GRGS GNSS scientific software. 3rd Int. Coll. Sci. Fundam. Asp. Galileo Program. ESA Proc. WPP326 31, 8–10 (2011).
Le Maistre, S. et al. Lander radio science experiment with a direct link between Mars and the Earth. Planet. Space Sci. 68, 105–122 (2012).
Google Scholar
Konopliv, A. S. et al. Detection of the Chandler wobble of Mars from orbiting spacecraft. Geophys. Res. Lett. 47, e2020GL090568 (2020).
Google Scholar
Baland, R.-M. et al. The precession and nutations of a rigid Mars. Celest. Mech. Dyn. Astron. 132, 47 (2020).
Google Scholar
Banfield, D. et al. InSight Auxiliary Payload Sensor Suite (APSS). Space Sci. Rev. 215, 4 (2019).
Google Scholar
Sanloup, C. et al. Density measurements of liquid Fe–S alloys at high-pressure. Geophys. Res. Lett. 27, 811–814 (1999).
Google Scholar
Yoshizaki, T. & McDonough, W. F. The composition of Mars. Geochim. Cosmochim. Acta 273, 137–162 (2020).
Google Scholar
Smrekar, S. E. et al. Pre-mission InSights on the interior of Mars. Space Sci. Rev. 215, 3 (2019).
Google Scholar
Yoder, C. F., Konopliv, A. S., Yuan, D. N., Standish, E. M. & Folkner, W. M. Fluid core size of Mars from detection of the solar tide. Science 300, 299–303 (2003).
Google Scholar
Stähler, S. C. et al. Seismic detection of the martian core. Science 373, 443–448 (2021).
Google Scholar
Rivoldini, A., Van Hoolst, T., Verhoeven, O., Mocquet, A. & Dehant, V Geodesy constraints on the interior structure and composition of Mars. Icarus 213, 451–472 (2011).
Google Scholar
Khan, A. et al. A geophysical perspective on the bulk composition of Mars. J. Geophys. Res. 123, 575–611 (2018).
Google Scholar
Wieczorek, M. A., Beuthe, M., Rivoldini, A. & Van Hoolst, T. Hydrostatic interfaces in bodies with nonhydrostatic lithospheres. J. Geophys. Res. Planets 124, 1410–1432 (2019).
Kiefer, W. S., Bills, B. G. & Nerem, R. S. An inversion of gravity and topography for mantle and crustal structure on Mars. J. Geophys. Res. Planets 101, 9239–9252 (1996).
Google Scholar
Defraigne, P., Dehant, V. & Van Hoolst, T. Steady-state convection in Mars’ mantle. Planet. Space Sci. 49, 501–509 (2001).
Google Scholar
Samuel, H. et al. The thermo-chemical evolution of Mars with a strongly stratified mantle. J. Geophys. Res. Planets 126, e2020JE006613 (2021).
Google Scholar
McNamara, A. K. A review of large low shear velocity provinces and ultra low velocity zones. Tectonophysics 760, 199–220 (2019).
Google Scholar
Steenstra, E. S. & van Westrenen, W. A synthesis of geochemical constraints on the inventory of light elements in the core of Mars. Icarus 315, 69–78 (2018).
Google Scholar
Gendre, H., Badro, J., Wehr, N. & Borensztajn, S. Martian core composition from experimental high-pressure metal-silicate phase equilibria. Geochem. Perspect. Lett. 21, 42–46 (2022).
Google Scholar
Shibazaki, Y. et al. Hydrogen partitioning between iron and ringwoodite: implications for water transport into the Martian core. Earth Planet. Sci. Lett. 287, 463–470 (2009).
Google Scholar
Zharkov, V. N. The internal structure of Mars: a key to understanding the origin of terrestrial planets. Sol. Syst. Res. 30, 456–465 (1996).
Tsuno, K., Frost, D. J. & Rubie, D. C. The effects of nickel and sulphur on the core–mantle partitioning of oxygen in Earth and Mars. Phys. Earth Planet. Inter. 185, 1–12 (2011).
Google Scholar
Defraigne, P., Rivoldini, A., Van Hoolst, T. & Dehant, V. Mars nutation resonance due to free inner core nutation. J. Geophys. Res. Planets 108, 5128 (2003).
Google Scholar
Mittelholz, A. et al. Timing of the martian dynamo: new constraints for a core field 4.5 and 3.7 Ga ago. Sci. Adv. 6, eaba0513 (2020).
Google Scholar
Lodders, K. Relative atomic Solar System abundances, mass fractions, and atomic masses of the elements and their isotopes, composition of the solar photosphere, and compositions of the major chondritic meteorite groups. Space Sci. Rev. 217, 44 (2021).
Google Scholar
Estefan, J. A. & Sovers, O. J. A Comparative Survey of Current and Proposed Tropospheric Refraction-Delay Models for DSN Radio Metric Data Calibration. JPL Publication 94-24 (NASA 1994).
Le Maistre, S. Martian lander radio science data calibration for Mars troposphere. Radio Sci. 55, e2020RS007155 (2020).
Google Scholar
Buccino, D., Border, J. S., Folkner, W. M., Kahan, K. & Le Maistre, S. Low-SNR Doppler data processing for the InSight radio science experiment. Remote Sens. 14, 1924 (2022).
Google Scholar
Le Maistre, S., Rosenblatt, P., Dehant, V., Marty, J.-C. & Yseboodt, M. Mars rotation determination from a moving rover using Doppler tracking data: what could be done? Planet. Space Sci. 159, 17–27 (2018).
Google Scholar
Folkner, W. M., Williams, J. G., Boggs, D. H., Park, R. S. & Kuchynka, P. The planetary and lunar ephemerides DE430 and DE431. IPN Progr. Rep. 42, 196 (2014).
Jacobson, R. A. & Lainey, V. Martian satellite orbits and ephemerides. Planet. Space Sci. 102, 35–44 (2014).
Google Scholar
Dehant, V., Defraigne, P. & Van Hoolst, T. Computation of Mars’ transfer functions for nutations, tides and surface loading. Phys. Earth Planet. Inter. 117, 385–395 (2000).
Google Scholar
Van Hoolst, T., Dehant, V., Roosbeek, F. & Lognonné, P. Tidally induced surface displacements, external potential variations, and gravity variations on Mars. Icarus 161, 281–296 (2003).
Google Scholar
Archinal, B. A. et al. Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2015. Celest. Mech. Dyn. Astron. 130, 22 (2018).
Google Scholar
Konopliv, A. S., Yoder, C. F., Standish, E. M., Yuan, D.-N. & Sjogren, W. L. A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182, 23–50 (2006).
Google Scholar
Dehant, V. et al. The radioscience LaRa instrument onboard ExoMars 2020 to investigate the rotation and interior of Mars. Planet. Space Sci. 180, 104776 (2020).
Google Scholar
Kahan, D. S. et al. Mars precession rate determined from radiometric tracking of the InSight lander. Planet. Space Sci. 199, 105208 (2021).
Google Scholar
Baland, R.-M., Hees, A., Yseboodt, M., Bourgoin, A. & Le Maistre, S. Relativistic contributions to the rotation of Mars. Astron. Astrophys. 670, A29 (2023).
Google Scholar
Lange, L. et al. InSight pressure data recalibration, and its application to the study of long-term pressure changes on Mars. J. Geophys. Res. Planets 127, e2022JE007190 (2022).
Google Scholar
de la Torre Juarez, M., Piqueux, S., Kass, D. M., Newman, C. & Guzewich, S. D. Pressure deficit in Gale crater and a larger northern polar cap after the Mars year 34 global dust storm. AGU Fall Meeting Abstr. P51C-02 (2019).
Kuchynka, P. et al. New constraints on Mars rotation determined from radiometric tracking of the Opportunity Mars Exploration Rover. Icarus 229, 340–347 (2014).
Google Scholar
Panning, M. P. et al. Planned products of the Mars structure service for the InSight mission to Mars. Space Sci. Rev. 211, 611–650 (2017).
Google Scholar
Connolly, J. A. D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).
Google Scholar
Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals – I. Physical properties. Geophys. J. Int. 162, 610–632 (2005).
Google Scholar
Greenwood, S., Davies, C. J. & Pommier, A. Influence of thermal stratification on the structure and evolution of the Martian core. Geophys. Res. Lett. 48, e2021GL095198 (2021).
Google Scholar
Terasaki, H. et al. Pressure and composition effects on sound velocity and density of core-forming liquids: implication to core compositions of terrestrial planets. J. Geophys. Res. Planets 124, 2272–2293 (2019).
Google Scholar
Tsuno, K., Grewal, D. S. & Dasgupta, R. Core–mantle fractionation of carbon in Earth and Mars: the effects of sulfur. Geochim. Cosmochim. Acta 238, 477–495 (2018).
Google Scholar
Okuchi, T. Hydrogen partitioning into molten iron at high pressure: implications for Earth’s core. Science 278, 1781–1784 (1997).
Google Scholar
Clesi, V. et al. Low hydrogen contents in the cores of terrestrial planets. Sci. Adv. 4, e1701876 (2018).
Google Scholar
Malavergne, V. et al. Experimental constraints on the fate of H and C during planetary core–mantle differentiation. Implications for the Earth. Icarus 321, 473–485 (2019).
Google Scholar
Yuan, L. & Steinle-Neumann, G. Strong sequestration of hydrogen into the Earth’s core during planetary differentiation. Geophys. Res. Lett. 47, e2020GL088303 (2020).
Google Scholar
Anderson, D. L. & Minster, J. B. The frequency dependence of Q in the Earth and implications for mantle rheology and Chandler wobble. Geophys. J. R. Astron. Soc. 58, 431–440 (1979).
Google Scholar
Yseboodt, M., Dehant, V. & Péters, M.-J. Signatures of the Martian rotation parameters in the Doppler and range observables. Planet. Space Sci. 144, 74–88 (2017).
Google Scholar