Sobin C, Sackeim HA. Psychomotor symptoms of depression. Am J Psychiatry. 1997;154(1):4–17. https://doi.org/10.1176/ajp.154.1.4.
Google Scholar
Northoff G, Hirjak D, Wolf RC, Magioncalda P, Martino M. All roads lead to the motor cortex: psychomotor mechanisms and their biochemical modulation in psychiatric disorders. Mol Psychiatry. 2021;26(1):92–102. https://doi.org/10.1038/s41380-020-0814-5.
Google Scholar
Bennabi D, Vandel P, Papaxanthis C, Pozzo T, Haffen E. Psychomotor retardation in depression: a systematic review of diagnostic, pathophysiologic, and therapeutic implications. Biomed Res Int. 2013;2013:158746. https://doi.org/10.1155/2013/158746.
Google Scholar
Calugi S, Cassano GB, Litta A, Rucci P, Benvenuti A, Miniati M, Lattanzi L, Mantua V, Lombardi V, Fagiolini A, et al. Does psychomotor retardation define a clinically relevant phenotype of unipolar depression? J Affect Disord. 2011;129(1–3):296–300. https://doi.org/10.1016/j.jad.2010.08.004.
Google Scholar
Gorlyn M, Keilp JG, Grunebaum MF, Taylor BP, Oquendo MA, Bruder GE, Stewart JW, Zalsman G, Mann JJ. Neuropsychological characteristics as predictors of SSRI treatment response in depressed subjects. J Neural Transm (Vienna). 2008;115(8):1213–9. https://doi.org/10.1007/s00702-008-0084-x.
Google Scholar
Bruder GE, Alvarenga JE, Alschuler D, Abraham K, Keilp JG, Hellerstein DJ, Stewart JW, McGrath PJ. Neurocognitive predictors of antidepressant clinical response. J Affect Disord. 2014;166:108–14. https://doi.org/10.1016/j.jad.2014.04.057.
Google Scholar
Buyukdura JS, McClintock SM, Croarkin PE. Psychomotor retardation in depression: biological underpinnings, measurement, and treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(2):395–409. https://doi.org/10.1016/j.pnpbp.2010.10.019.
Google Scholar
Martino M, Magioncalda P, Conio B, Capobianco L, Russo D, Adavastro G, Tumati S, Tan Z, Lee HC, Lane TJ, et al. Abnormal Functional Relationship of Sensorimotor Network With Neurotransmitter-Related Nuclei via Subcortical-Cortical Loops in Manic and Depressive Phases of Bipolar Disorder. Schizophr Bull. 2020;46(1):163–74. https://doi.org/10.1093/schbul/sbz035.
Google Scholar
Martino M, Magioncalda P, Huang Z, Conio B, Piaggio N, Duncan NW, Rocchi G, Escelsior A, Marozzi V, Wolff A, et al. Contrasting variability patterns in the default mode and sensorimotor networks balance in bipolar depression and mania. Proc Natl Acad Sci U S A. 2016;113(17):4824–9. https://doi.org/10.1073/pnas.1517558113.
Google Scholar
Mittal VA, Bernard JA, Northoff G. What Can Different Motor Circuits Tell Us About Psychosis? An RDoC Perspective Schizophr Bull. 2017;43(5):949–55. https://doi.org/10.1093/schbul/sbx087.
Google Scholar
Videbech P, Ravnkilde B, Pedersen TH, Hartvig H, Egander A, Clemmensen K, Rasmussen NA, Andersen F, Gjedde A, Rosenberg R. The Danish PET/depression project: clinical symptoms and cerebral blood flow A regions-of-interest analysis. Acta Psychiatr Scand. 2002;106(1):35–44. https://doi.org/10.1034/j.1600-0447.2002.02245.x.
Google Scholar
Narita H, Odawara T, Iseki E, Kosaka K, Hirayasu Y. Psychomotor retardation correlates with frontal hypoperfusion and the Modified Stroop Test in patients under 60-years-old with major depression. Psychiatry Clin Neurosci. 2004;58(4):389–95. https://doi.org/10.1111/j.1440-1819.2004.01273.x.
Google Scholar
Mayberg HS, Lewis PJ, Regenold W, Wagner HN Jr. Paralimbic hypoperfusion in unipolar depression. J Nucl Med. 1994;35(6):929–34.
Google Scholar
Bracht T, Federspiel A, Schnell S, Horn H, Höfle O, Wiest R, Dierks T, Strik W, Müller TJ, Walther S. Cortico-cortical white matter motor pathway microstructure is related to psychomotor retardation in major depressive disorder. PLoS One. 2012;7(12):e52238. https://doi.org/10.1371/journal.pone.0052238.
Google Scholar
Walther S, Hügli S, Höfle O, Federspiel A, Horn H, Bracht T, Wiest R, Strik W, Müller TJ. Frontal white matter integrity is related to psychomotor retardation in major depression. Neurobiol Dis. 2012;47(1):13–9. https://doi.org/10.1016/j.nbd.2012.03.019.
Google Scholar
Hickie I, Scott E, Mitchell P, Wilhelm K, Austin MP, Bennett B. Subcortical hyperintensities on magnetic resonance imaging: clinical correlates and prognostic significance in patients with severe depression. Biol Psychiatry. 1995;37(3):151–60. https://doi.org/10.1016/0006-3223(94)00174-2.
Google Scholar
Yin Y, Wang M, Wang Z, Xie C, Zhang H, Zhang H, Zhang Z, Yuan Y. Decreased cerebral blood flow in the primary motor cortex in major depressive disorder with psychomotor retardation. Prog Neuropsychopharmacol Biol Psychiatry. 2018;81:438–44. https://doi.org/10.1016/j.pnpbp.2017.08.013.
Google Scholar
Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110(11):1842–57. https://doi.org/10.1016/s1388-2457(99)00141-8.
Google Scholar
Kilavik BE, Zaepffel M, Brovelli A, MacKay WA, Riehle A. The ups and downs of β oscillations in sensorimotor cortex. Exp Neurol. 2013;245:15–26. https://doi.org/10.1016/j.expneurol.2012.09.014.
Google Scholar
Fingelkurts AA, Fingelkurts AA, Rytsälä H, Suominen K, Isometsä E, Kähkönen S. Composition of brain oscillations in ongoing EEG during major depression disorder. Neurosci Res. 2006;56(2):133–44. https://doi.org/10.1016/j.neures.2006.06.006.
Google Scholar
Fingelkurts AA, Fingelkurts AA. Altered structure of dynamic electroencephalogram oscillatory pattern in major depression. Biol Psychiatry. 2015;77(12):1050–60. https://doi.org/10.1016/j.biopsych.2014.12.011.
Google Scholar
Jiang H, Popov T, Jylänki P, Bi K, Yao Z, Lu Q, Jensen O, van Gerven MA. Predictability of depression severity based on posterior alpha oscillations. Clin Neurophysiol. 2016;127(4):2108–14. https://doi.org/10.1016/j.clinph.2015.12.018.
Google Scholar
Jiang H, Dai Z, Lu Q, Yao Z. Magnetoencephalography resting-state spectral fingerprints distinguish bipolar depression and unipolar depression. Bipolar Disord. 2020;22(6):612–20. https://doi.org/10.1111/bdi.12871.
Google Scholar
Jiang H, Hua L, Dai Z, Tian S, Yao Z, Lu Q, Popov T. Spectral fingerprints of facial affect processing bias in major depression disorder. Soc Cogn Affect Neurosci. 2019;14(11):1233–42. https://doi.org/10.1093/scan/nsz096.
Google Scholar
Wang H, Tian S, Yan R, Tang H, Shi J, Zhu R, Chen Y, Han Y, Chen Z, Zhou H, et al. Convergent and divergent cognitive impairment of unipolar and bipolar depression: A magnetoencephalography resting-state study. J Affect Disord. 2022;321:8–15. https://doi.org/10.1016/j.jad.2022.09.126.
Google Scholar
Parkkonen E, Laaksonen K, Piitulainen H, Parkkonen L, Forss N. Modulation of the ∽20-Hz motor-cortex rhythm to passive movement and tactile stimulation. Brain Behav. 2015;5(5):e00328. https://doi.org/10.1002/brb3.328.
Google Scholar
Jurkiewicz MT, Gaetz WC, Bostan AC, Cheyne D. Post-movement beta rebound is generated in motor cortex: evidence from neuromagnetic recordings. Neuroimage. 2006;32(3):1281–9. https://doi.org/10.1016/j.neuroimage.2006.06.005.
Google Scholar
Miller KJ, Leuthardt EC, Schalk G, Rao RP, Anderson NR, Moran DW, Miller JW, Ojemann JG. Spectral changes in cortical surface potentials during motor movement. J Neurosci. 2007;27(9):2424–32. https://doi.org/10.1523/jneurosci.3886-06.2007.
Google Scholar
Solis-Escalante T, Müller-Putz GR, Pfurtscheller G, Neuper C. Cue-induced beta rebound during withholding of overt and covert foot movement. Clin Neurophysiol. 2012;123(6):1182–90. https://doi.org/10.1016/j.clinph.2012.01.013.
Google Scholar
Houdayer E, Labyt E, Cassim F, Bourriez JL, Derambure P. Relationship between event-related beta synchronization and afferent inputs: analysis of finger movement and peripheral nerve stimulations. Clin Neurophysiol. 2006;117(3):628–36. https://doi.org/10.1016/j.clinph.2005.12.001.
Google Scholar
Tan H, Wade C, Brown P. Post-Movement Beta Activity in Sensorimotor Cortex Indexes Confidence in the Estimations from Internal Models. J Neurosci. 2016;36(5):1516–28. https://doi.org/10.1523/jneurosci.3204-15.2016.
Google Scholar
Hervault M, Zanone PG, Buisson JC, Huys R. Cortical sensorimotor activity in the execution and suppression of discrete and rhythmic movements. Sci Rep. 2021;11(1):22364. https://doi.org/10.1038/s41598-021-01368-2.
Google Scholar
Cao L, Hu Y. Beta Rebound in Visuomotor Adaptation: Still the Status Quo? J Neurosci. 2016;36(24):6365–7. https://doi.org/10.1523/jneurosci.1007-16.2016.
Google Scholar
Leriche RB, Jackson N, Peterson K, Aspandiar Z, Hufnagel V, Swann NC. Reduced sensorimotor beta dynamics could represent a “slowed movement state” in healthy individuals. Neuropsychologia. 2022:108276. https://doi.org/10.1016/j.neuropsychologia.2022.108276.
Heinrichs-Graham E, Wilson TW, Santamaria PM, Heithoff SK, Torres-Russotto D, Hutter-Saunders JA, Estes KA, Meza JL, Mosley RL, Gendelman HE. Neuromagnetic evidence of abnormal movement-related beta desynchronization in Parkinson’s disease. Cereb Cortex. 2014;24(10):2669–78. https://doi.org/10.1093/cercor/bht121.
Google Scholar
Gaetz W, Macdonald M, Cheyne D, Snead OC. Neuromagnetic imaging of movement-related cortical oscillations in children and adults: age predicts post-movement beta rebound. Neuroimage. 2010;51(2):792–807. https://doi.org/10.1016/j.neuroimage.2010.01.077.
Google Scholar
Bardouille T, Bailey L. Evidence for age-related changes in sensorimotor neuromagnetic responses during cued button pressing in a large open-access dataset. Neuroimage. 2019;193:25–34. https://doi.org/10.1016/j.neuroimage.2019.02.065.
Google Scholar
Heinrichs-Graham E, Wilson TW. Is an absolute level of cortical beta suppression required for proper movement? Magnetoencephalographic evidence from healthy aging. Neuroimage. 2016;134:514–21. https://doi.org/10.1016/j.neuroimage.2016.04.032.
Google Scholar
Xifra-Porxas A, Niso G, Larivière S, Kassinopoulos M, Baillet S, Mitsis GD, Boudrias MH. Older adults exhibit a more pronounced modulation of beta oscillations when performing sustained and dynamic handgrips. Neuroimage. 2019;201:116037. https://doi.org/10.1016/j.neuroimage.2019.116037.
Google Scholar
Rossiter HE, Davis EM, Clark EV, Boudrias MH, Ward NS. Beta oscillations reflect changes in motor cortex inhibition in healthy ageing. Neuroimage. 2014;91(100):360–5. https://doi.org/10.1016/j.neuroimage.2014.01.012.
Google Scholar
Walker S, Monto S, Piirainen JM, Avela J, Tarkka IM, Parviainen TM, Piitulainen H. Older Age Increases the Amplitude of Muscle Stretch-Induced Cortical Beta-Band Suppression But Does not Affect Rebound Strength. Front Aging Neurosci. 2020;12:117. https://doi.org/10.3389/fnagi.2020.00117.
Google Scholar
Gehringer JE, Arpin DJ, VerMaas JR, Trevarrow MP, Wilson TW, Kurz MJ. The Strength of the Movement-related Somatosensory Cortical Oscillations Differ between Adolescents and Adults. Sci Rep. 2019;9(1):18520. https://doi.org/10.1038/s41598-019-55004-1.
Google Scholar
Groth CL, Singh A, Zhang Q, Berman BD, Narayanan NS. GABAergic Modulation in Movement Related Oscillatory Activity: A Review of the Effect Pharmacologically and with Aging. Tremor Other Hyperkinet Mov (N Y). 2021;11:48. https://doi.org/10.5334/tohm.655.
Google Scholar
Gehringer JE, Arpin DJ, Heinrichs-Graham E, Wilson TW, Kurz MJ. Practice modulates motor-related beta oscillations differently in adolescents and adults. J Physiol. 2019;597(12):3203–16. https://doi.org/10.1113/jp277326.
Google Scholar
Trevarrow MP, Kurz MJ, McDermott TJ, Wiesman AI, Mills MS, Wang YP, Calhoun VD, Stephen JM, Wilson TW. The developmental trajectory of sensorimotor cortical oscillations. Neuroimage. 2019;184:455–61. https://doi.org/10.1016/j.neuroimage.2018.09.018.
Google Scholar
Hall SD, Prokic EJ, McAllister CJ, Ronnqvist KC, Williams AC, Yamawaki N, Witton C, Woodhall GL, Stanford IM. GABA-mediated changes in inter-hemispheric beta frequency activity in early-stage Parkinson’s disease. Neuroscience. 2014;281:68–76. https://doi.org/10.1016/j.neuroscience.2014.09.037.
Google Scholar
Boon LI, Geraedts VJ, Hillebrand A, Tannemaat MR, Contarino MF, Stam CJ, Berendse HW. A systematic review of MEG-based studies in Parkinson’s disease: The motor system and beyond. Hum Brain Mapp. 2019;40(9):2827–48. https://doi.org/10.1002/hbm.24562.
Google Scholar
Heinrichs-Graham E, Santamaria PM, Gendelman HE, Wilson TW. The cortical signature of symptom laterality in Parkinson’s disease. Neuroimage Clin. 2017;14:433–40. https://doi.org/10.1016/j.nicl.2017.02.010.
Google Scholar
Gascoyne LE, Brookes MJ, Rathnaiah M, Katshu M, Koelewijn L, Williams G, Kumar J, Walters JTR, Seedat ZA, Palaniyappan L, et al. Motor-related oscillatory activity in schizophrenia according to phase of illness and clinical symptom severity. Neuroimage Clin. 2021;29:102524. https://doi.org/10.1016/j.nicl.2020.102524.
Google Scholar
Robson SE, Brookes MJ, Hall EL, Palaniyappan L, Kumar J, Skelton M, Christodoulou NG, Qureshi A, Jan F, Katshu MZ, et al. Abnormal visuomotor processing in schizophrenia. Neuroimage Clin. 2016;12:869–78. https://doi.org/10.1016/j.nicl.2015.08.005.
Google Scholar
Rathnaiah M, Liddle EB, Gascoyne L, Kumar J, Zia UlHaqKatshu M, Faruqi C, Kelly C, Gill M, Robson S, Brookes M, et al. Quantifying the Core Deficit in Classical Schizophrenia. Schizophr Bull Open. 2020;1(1):sgaa031. https://doi.org/10.1093/schizbullopen/sgaa031.
Google Scholar
Hunt B, Liddle E, Gascoyne L, Magazzini L, Routley B, Singh K, Morris P, Brookes M, Liddle P. Attenuated Post-Movement Beta Rebound Associated With Schizotypal Features in Healthy People. Schizophr Bull. 2019;45(4):883–91. https://doi.org/10.1093/schbul/sby117.
Google Scholar
An KM, Ikeda T, Hasegawa C, Yoshimura Y, Tanaka S, Saito DN, Yaoi K, Iwasaki S, Hirosawa T, Jensen O, et al. Aberrant brain oscillatory coupling from the primary motor cortex in children with autism spectrum disorders. Neuroimage Clin. 2021;29:102560. https://doi.org/10.1016/j.nicl.2021.102560.
Google Scholar
Gaetz W, Rhodes E, Bloy L, Blaskey L, Jackel C, Brodkin E, Waldman A, Embick D, Hall S, Roberts T. Evaluating motor cortical oscillations and age-related change in autism spectrum disorder. Neuroimage. 2020;207:116349. https://doi.org/10.1016/j.neuroimage.2019.116349.
Google Scholar
Honaga E, Ishii R, Kurimoto R, Canuet L, Ikezawa K, Takahashi H, Nakahachi T, Iwase M, Mizuta I, Yoshimine T, et al. Post-movement beta rebound abnormality as indicator of mirror neuron system dysfunction in autistic spectrum disorder: an MEG study. Neurosci Lett. 2010;478(3):141–5. https://doi.org/10.1016/j.neulet.2010.05.004.
Google Scholar
Young RC, Biggs JT, Ziegler VE, Meyer DA. A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry. 1978;133:429–35. https://doi.org/10.1192/bjp.133.5.429.
Google Scholar
Mowbray RM. The Hamilton Rating Scale for depression: a factor analysis. Psychol Med. 1972;2(3):272–80. https://doi.org/10.1017/s0033291700042574.
Google Scholar
Hamilton M. Development of a rating scale for primary depressive illness. Br J Soc Clin Psychol. 1967;6(4):278–96. https://doi.org/10.1111/j.2044-8260.1967.tb00530.x.
Google Scholar
Bowie CR, Harvey PD. Administration and interpretation of the Trail Making Test. Nat Protoc. 2006;1(5):2277–81. https://doi.org/10.1038/nprot.2006.390.
Google Scholar
Baune BT, Brignone M, Larsen KG. A Network Meta-Analysis Comparing Effects of Various Antidepressant Classes on the Digit Symbol Substitution Test (DSST) as a Measure of Cognitive Dysfunction in Patients with Major Depressive Disorder. Int J Neuropsychopharmacol. 2018;21(2):97–107. https://doi.org/10.1093/ijnp/pyx070.
Google Scholar
van Hoof JJ, Hulstijn W, van Mier H, Pagen M. Figure drawing and psychomotor retardation: preliminary report. J Affect Disord. 1993;29(4):263–6. https://doi.org/10.1016/0165-0327(93)90016-d.
Google Scholar
Han YL, Dai ZP, Ridwan MC, Lin PH, Zhou HL, Wang HF, Yao ZJ, Lu Q. Connectivity of the Frontal Cortical Oscillatory Dynamics Underlying Inhibitory Control During a Go/No-Go Task as a Predictive Biomarker in Major Depression. Front Psychiatry. 2020;11:707. https://doi.org/10.3389/fpsyt.2020.00707.
Google Scholar
Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011;2011:156869. https://doi.org/10.1155/2011/156869.
Google Scholar
Van Veen BD, van Drongelen W, Yuchtman M, Suzuki A. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng. 1997;44(9):867–80. https://doi.org/10.1109/10.623056.
Google Scholar
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15(1):273–89. https://doi.org/10.1006/nimg.2001.0978.
Google Scholar
Salenius S, Schnitzler A, Salmelin R, Jousmäki V, Hari R. Modulation of human cortical rolandic rhythms during natural sensorimotor tasks. Neuroimage. 1997;5(3):221–8. https://doi.org/10.1006/nimg.1997.0261.
Google Scholar
Gaetz W, Cheyne D. Localization of sensorimotor cortical rhythms induced by tactile stimulation using spatially filtered MEG. Neuroimage. 2006;30(3):899–908. https://doi.org/10.1016/j.neuroimage.2005.10.009.
Google Scholar
Umeda T, Isa T, Nishimura Y. The somatosensory cortex receives information about motor output. Sci Adv. 2019;5(7):eaaw5388. https://doi.org/10.1126/sciadv.aaw5388.
Google Scholar
Trevarrow MP, Reelfs A, Baker SE, Hoffman RM, Wilson TW, Kurz MJ. Spinal cord microstructural changes are connected with the aberrant sensorimotor cortical oscillatory activity in adults with cerebral palsy. Sci Rep. 2022;12(1):4807. https://doi.org/10.1038/s41598-022-08741-9.
Google Scholar
Zhang X, Li H, Xie T, Liu Y, Chen J, Long J. Movement speed effects on beta-band oscillations in sensorimotor cortex during voluntary activity. J Neurophysiol. 2020;124(2):352–9. https://doi.org/10.1152/jn.00238.2020.
Google Scholar
Martinot M, Bragulat V, Artiges E, Dollé F, Hinnen F, Jouvent R, Martinot J. Decreased presynaptic dopamine function in the left caudate of depressed patients with affective flattening and psychomotor retardation. Am J Psychiatry. 2001;158(2):314–6. https://doi.org/10.1176/appi.ajp.158.2.314.
Google Scholar
Naismith S, Hickie I, Ward PB, Turner K, Scott E, Little C, Mitchell P, Wilhelm K, Parker G. Caudate nucleus volumes and genetic determinants of homocysteine metabolism in the prediction of psychomotor speed in older persons with depression. Am J Psychiatry. 2002;159(12):2096–8. https://doi.org/10.1176/appi.ajp.159.12.2096.
Google Scholar
Semkovska M, Quinlivan L, O’Grady T, Johnson R, Collins A, O’Connor J, Knittle H, Ahern E, Gload T. Cognitive function following a major depressive episode: a systematic review and meta-analysis. Lancet Psychiatry. 2019;6(10):851–61. https://doi.org/10.1016/s2215-0366(19)30291-3.
Google Scholar
Barratt EL, Tewarie PK, Clarke MA, Hall EL, Gowland PA, Morris PG, Francis ST, Evangelou N, Brookes MJ. Abnormal task driven neural oscillations in multiple sclerosis: A visuomotor MEG study. Hum Brain Mapp. 2017;38(5):2441–53. https://doi.org/10.1002/hbm.23531.
Google Scholar
Jouvent R, Frechette D, Binoux F, Lancrenon S, des Lauriers A. Retardation in depressive states : elaboration of a quantitative rating scale (author’s transl). Encephale. 1980;6(1):41–58.
Google Scholar
Sobin C, Mayer L, Endicott J. The motor agitation and retardation scale: a scale for the assessment of motor abnormalities in depressed patients. J Neuropsychiatry Clin Neurosci. 1998;10(1):85–92. https://doi.org/10.1176/jnp.10.1.85.
Google Scholar
Parker G, Hadzi-Pavlovic D, Austin MP, Mitchell P, Wilhelm K, Hickie I, Boyce P, Eyers K. Sub-typing depression, I. Is psychomotor disturbance necessary and sufficient to the definition of melancholia? Psychol Med. 1995;25(4):815–23. https://doi.org/10.1017/s0033291700035066.
Google Scholar
Pakenham DO, Quinn AJ, Fry A, Francis ST, Woolrich MW, Brookes MJ, Mullinger KJ. Post-stimulus beta responses are modulated by task duration. Neuroimage. 2020;206:116288. https://doi.org/10.1016/j.neuroimage.2019.116288.
Google Scholar
Fry A, Mullinger KJ, O’Neill GC, Barratt EL, Morris PG, Bauer M, Folland JP, Brookes MJ. Modulation of post-movement beta rebound by contraction force and rate of force development. Hum Brain Mapp. 2016;37(7):2493–511. https://doi.org/10.1002/hbm.23189.
Google Scholar
Feingold J, Gibson DJ, DePasquale B, Graybiel AM. Bursts of beta oscillation differentiate postperformance activity in the striatum and motor cortex of monkeys performing movement tasks. Proc Natl Acad Sci U S A. 2015;112(44):13687–92. https://doi.org/10.1073/pnas.1517629112.
Google Scholar